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Preface

Silicon technology has seen relentless advances in the past 50 years, driven by constant innovation
and miniaturisation. As a result, more and more functionality has been placed into a single chip. Today,
entire systems, including processors, memory, sensors and analogue circuitry, are integrated into one
single chip (hence, a system-on-chip or SoC), delivering increased performance despite tight area,
power and energy budgets. The aim of this textbook is to expose aspiring and practising SoC
designers to the fundamentals and latest developments in SoC design and technologies. The
processors within a SoC run a huge body of software. Much of this code is portable over many
platforms, but low-level components, such as device drivers, are hardware-dependent and may be
CPU-intensive. Power use can be reduced using custom accelerator hardware. Although this book
emphasises the hardware design elements, it also addresses co-design, in which the hardware and
software are designed hand in hand. It is assumed that the reader already understands the basics of
processor architecture, computer technology, and software and hardware design.

Is This Book Suitable For You?

We assume that you have some experience with hardware design using an RTL such as Verilog or
VHDL, and that you understand assembly language programming and basic principles of operating
systems. In other words, you have completed the first two years of a degree in Computer Science or
Electronic Engineering.

Many of the principles taught in this book are relevant for all forms of system architect, including
those who are designing cloud-scale applications, custom accelerators or loT devices in general, or
those making FPGA designs. But the details of design verification in Chapter 8 are likely to be just of
interest to those designing semi-custom silicon using standard cells.

A Git repository of online additional material is available at http://bitbucket.org/djg11/modern-
soc-design-djg

This contains data used for generating tables and graphs in the book, as well as further source code,
lab materials, examples and answers to selected exercises.

The repo contains a SystemC model of the Zynq super FPGA device family, coded in blocking TLM

style. It is sufficient to run an Arm A9 Linux kernel using an identical boot image as the real silicon.

Book Structure
This book contains nine chapters, each devoted to a different aspect of SoC design.

Chapter 1 reviews basic computer architecture, defining terms that are used in later chapters.
Readers are expected to be largely familiar with most of this material, although the transactional-level



Preface

modelling (TLM) view of the hardware is likely to be new. A SoC is an assembly of intellectual property
(IP) blocks.

Chapter 2 describes many of the standard IP blocks that make up a typical SoC, including processors,
memories, input/output devices and interrupts.

Chapter 3 considers the interconnect between the IP blocks, covering the evolution of processor
busses and networks-on-chip (NoCs).

Chapter 4 teaches basic principles of system architecture, including dimensioning of busses and
queuing theory and arbitration policies. It also discusses debug support.

Chapter 5 presents Electronic System Level (ESL) modelling, where a simulation model for a whole
SoC, also known as a virtual platform, is put together. The ESL model is sufficient to test and develop
software, as well as to perform architectural exploration, where the throughput, energy use and
silicon area of a proposed system implementation can be examined at a high level.

Chapter 6 presents further architectural exploration considerations, including the design of custom
accelerators for a specific application. The languages Bluespec and Chisel are described as
alternatives to RTL for design entry and the basic principles of high-level synthesis (HLS) are covered.

Chapter 7 is a primer for formal verification of SoCs, comparing the usefulness of formal compared
with simulation for bug hunting and right-first-time solutions. A number of useful formal tricks are
covered.

Chapter 8 presents semi-custom fabrication flows for making the physical silicon and covers advanced
verification and variability mitigation techniques for today’s deep sub-micron devices using FinFETs.

Chapter 9 covers what to do when the first SoC samples arrive back from the wafer processing plant,
including booting an operating system and checking environmental compatibility (operating
temperature and unwanted radio emissions).

Xviii
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1.1 What is a System-on-Chip?

The majority of computers made today follow the System-on-Chip (SoC) approach. A SoC contains
the processors, caches, memory and input/output (I/O) devices all on one piece of silicon. This gives
the lowest product cost and so is used whenever possible. More complex computers cannot fit onto a
single piece of silicon and so multiple chips are used. This is also the preferred approach if the
manufacturing process for a single chip is not the best for all of its parts. In a later chapter

(Section 6.1), we discuss motivations for using different chips for DRAM and flash memories.
However, even when multiple pieces of silicon are used, they are often tightly integrated into a single
package using die-stacking or interposers (Section 8.9.1). Packing the computer into the smallest
space possible is the primary technique by which computer technology has progressed in the last
60years. A smaller computer has shorter wires and can operate faster for the same power
consumption. The relevant equations are described in Section 4.6.

We start this book with a review of what a computer is and was.

1.1.1 Historical Review

A SoC is a System-on-Chip. In this context, the word system originally denoted a computer but today’s
SoCs have many computers on them. To kick off this chapter, we start by defining some terminology
that we will develop and use throughout this book. An MPSoC is a SoC containing multiple embedded
processors. The four quadrants in Table 1.1 give a traditional view of an old computer system.

Table 1.1 Four quadrants of a computer

Control unit | Execution unit

Primary storage | 1/0 devices

Each quadrant occupied at least one full-height 19-inch rack in early computers. The execution unit
and the control unit are together known as the central processing unit (CPU). When VLSI technology
advanced such that a CPU could be put on a single chip, this was called a microprocessor. Famously,
Gordon Moore is recognised as the first person to do this, with the invention of the Intel 4004 in 1971.

The primary storage contains both programs and data in a von Neumann architecture. Thisis in
contrast to a Harvard architecture that has separate primary memories for programs and data
(Section 2.1). Primary storage is also known as main memory. Primary storage is directly addressed
by the CPU, both for an instruction fetch and for data load and store instructions. With the advent of
tape and disk drives as I/O devices, further memory was attached as secondary storage and behaves
like any other I/O device. Flash memory is the predominant form of secondary storage today
(Section 2.6.8).

Animportant strand in this book is transactional-level modelling (TLM). Figure 1.1 illustrates a TLM
view of a simple computer with no 1/O devices. We will describe TLM in detail in Chapter 5. In
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contrast, Verilog and VHDL are the predominant register transfer languages (RTLs), studied

in Section 8.3. We introduce TLM right here at the start and will use TLM examples alongside RTL
examples throughout. In Figure 1.1, the microprocessor makes TLM calls on the memory. The
processor is an initiator and the memory is the target. There is only one target in this very simple
system, but normally the initiator has a choice of targets on which to invoke transactions. TLM calls
are essentially the same as method calls in object-oriented languages such as C++.

q R[1] = mem.read(R[2]);
Microprocessor Memory
(MPU) = — (RAM)

mem.write(R[2], R[3]);

Figure 1.1 Transactional-level model (TLM) of the simplest computer (left) and code fragments (right)

Personal computers of the 1970s were called microcomputers. Famous models are the Commodore
Pet, the Tandy TRS-80 and various Acorn computers, including the BBC Micro, which led to the
founding of Arm. These microcomputers can be regarded as the ancestors of today’s SoCs. The range
of address values that can be put on the address bus is called an address space. They used a 16-bit
address bus and an 8-bit data bus, so are called A16D8 systems. The microprocessor can make two
main TLM calls to access memory space:

// Simple A16D8 TLM interface signature
u8_t read_byte(ul6_t addr); // Memory read (load)
void write_byte(ul6_t addr, u8_t data); // Memory write (store)

Such microprocessors often also support /O transactions, again with 8-bit data, but perhaps fewer
address bits for the I/0O space. Using separate instructions for 1/O, such as in and out, was desirable
since the A16 primary storage address was a critical resource that was spared by avoiding
memory-mapped I/O. The I/O calls would be something like:

// Simple A16D8 TLM interface signature
u8_t io_read(u8_t io_addr); // Input instruction

void io_write(u8_t io_addr, u8_t data); // Output instruction

Early microprocessors, such as the original Intel 8080, were A16D8 systems, so could address
64 kbytes of memory. Modern microprocessors commonly have on-chip caches and a memory
management unit for translating virtual memory addresses.

As we will see later, TLM modelling of processor operations is at quite a high level, leading to orders of
magnitude saving in simulation time compared with modelling each transition of every net that makes
up the components and their interconnect. We use the term ‘net’ throughout this book for a wire
between the output of one gate and the input or inputs of others. A net-level description of a SoC is its
circuit diagram.
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The C++ code fragments on the right in Figure 1.1 would be executed by an instruction set simulator
(1SS, Section 5.5) model of the processor when executing load and store instructions using
register-indirect addressing. The array R models the processor register file.

1.1.2 Simple Microprocessor Net-level Connections

Figure 1.2 shows a basic A16D8 microprocessor with a tri-state bus. A single set of data wires are
used, bidirectionally, to alternately send data to and from the processor. At most, only one source can
enable its tri-state buffers at a time, otherwise a heavy current will arise in a bus fight, during which
two sources disagree on the value of data bits. Microcomputers of the 1970s and 1980s used a
tri-state bus. This microprocessor uses the net-level connections shown in Table 1.2 for its bus
transactions.

System Clock
~ Data q—s‘_p
Reset Input —
ol r Address P

hren ——

Interrupt Request hwen ——»

I ack ——

Microprocessor

Figure 1.2 Schematic symbol and external connections for a tri-state version of a simple microprocessor

The processor puts its address (and also data for a write) on the busses, asserts hwen or hren
depending on whether it is a write or read and waits for ack. For aread, the data present on the data
bus when ack is asserted is accepted by the processor. This is the essence of the bus protocol. We
later define the protocol more thoroughly using separate read and write data busses (Section 1.1.4).
Having just one bus protocol that is used by all interconnected blocks is a key part in facilitating SoC
integration at scale. Large real-world SoCs inevitably use several protocols, but each must be justified
by its performance, power use or other capabilities.

Table 1.2 Net-level connections

Connection Direction Use

datal[7:0] 1/0 Bidirectional data bus

addr[15:0] Output Selection of internal address; not all 32 bits are used

hren Output Asserted during a data read from the target to the host

hwen Output Asserted during a write of data from the host to the target

ack Input Asserted when the addressed device has completed its operation

The processor has three control inputs, shown on the left-hand side of Figure 1.2. The clock input is a
periodic square wave (of afew MHz in the 1970s). The reset input causes the program counter to be
set to a hardwired value called the reset vector (typically all zeros). An interrupt input makes it save
the current program counter and load another hardwired vector that is the entry point for an
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interrupt service routine (ISR). Typically, the processor hardware will set an interrupt disable bit in
the status word at the same time. It is the programmer’s responsibility to ensure that the interrupt
input is de-asserted before it clears the interrupt disable bit.

Given the definition of a simple microprocessor, we can proceed with the definition of a full

microcomputer. Although we expect the readers of this book to be thoroughly familiar with this
material in hardware terms, the simultaneous presentation of TLM may be new.

1.1.3 Full Netlist and Memory Map for a Microcomputer

Address bus
Register File R (16 bits)
(including PC) >
DO-7
Data bus [*—> Memory Map
(8 bits) Execution AlS decoder circuit.
Control Unit
Unit AL Ald The “glue' logic
+ALU Al13
Often a PAL
Microprocessor single chip device.
3
2
k5 A0-13 e
£
Main Memory DO-7 Memory
> 1> i wen
RAM Static RAM ren |
16 kByte
RAM_ENABLE_BA!
enb [O
A0-9|w
. 'EO"{'A D0-7 | {KByteROM  ___
orbooting > Read Only Memory bj ROM_ENABLE_BA!
en.
wen
1/0 Device DO-7 UART ren|+—
«—> . _5 |
Serial Port A0 UART_ENABLE_BAR
enb (O

RS232 serial connectionT l

Figure 1.3 A simple A16D8 microcomputer structure. A microprocessor initiates all transactions on a bidirectional/tri-state data bus, which is connected to
all other components

Figure 1.3 shows the inter-chip wiring of a basic microcomputer (i.e. a computer based on a
microprocessor). The allocation of the 64 kbytes of addressable space to hardware resources is called
the memory map. Table 1.3 is the memory map generated by the logic of Figure 1.4. The glue logic can

be implemented with two invertors and three NAND gates as shown. It is also described in the
following RTL:
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module address_decode(abus, rom_cs, ram_cs, uart_cs); // Glue logic for address decode
input [15:14] abus;

output rom_cs, ram_cs, uart_cs;

assign rom_cs = !(abus == 2'b00); // 0x0000
assign ram_cs = !(abus == 2'b01); // 0x4000
assign uart_cs = !(abus == 2'b11); // 0xC000
endmodule
Table 1.3 Memory map Al4 ——
%—;F ROM /CS
Start End Resource A15 {>O
0000 O3FF ROM (1 kbytes) RAM /CS
0400 3FFF Unused images of ROM
4000 7FFF RAM (16 kbytes) UART /CS
8000 BFFF Unused .
€000 €007 Registers (8) in the UART Gilue logic
C008 FFFF Unused images of the UART

Figure 1.4 Connections to memory

For a thorough equivalent example today, run cat /proc/iomemon any Linux machine to see its
address map.

In our simple example, the 64-kbyte memory map of the processor has been allocated to the three
addressable resources, as shown in the memory map table. The high-order address bits are decoded
to create chip enable signals for each of the connected peripherals, which are the RAM (Section 2.6.1),
ROM (Section 2.6.2) and universal asynchronous receiver and transmitter (UART, Section 2.7.1). The
memory map must be allocated without overlapping the resources. The ROM needs to be mapped so
that it encompasses the reset vector, which is where the processor starts executing from when it is
reset. It is commonly zero, as assumed here. In such a simple computer, the full memory map must be
known at the time the code for the ROM is compiled. This requires agreement between the hardware
and software engineers. Modern SoCs tend to use programmed memory map discovery techniques so
that the software is portable over a variety of hardware devices to accommodate various orderings of
pluggable peripherals (Section 3.1.7).

In the early days, the static memory map was written on a blackboard so that all engineers (hardware
and software) could see it. For a modern SoC, there can be up to 100 devices in the memory map and a
complex device could have several hundred internal registers and fields within such registers. Each
register or field will have a protocol update policy (e.g. read/write, read-only etc.) and may or may not
change through its own volition. Automatic tooling to manage and document a memory map is vital.
Virtualisation and security considerations dictate that some registers have alternative views and
access policies. An XML representation called IP-XACT (Section 6.8.2) is one standard that has been
adopted for machine-generated memory maps. It allows the glue logic and all the interconnect wiring
to be generated automatically.
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1.1.4 Separate Read and Write Data Busses

Our example so far used a tri-state bus. These are still commonly used for chip-to-chip interconnects
on printed circuit boards (PCBs). However, modern SoCs do not use tri-states on-chip. A lower
switched-capacitance solution is achieved using point-to-point wiring, which also avoids wasting the
leakage energy in logic gates where the input is floating between logic levels (Section 4.6.2). In this
book, for simple reference designs we will initially use a reference bus that we call MSOC1. This uses
separate read and write busses instead of a single data bus. Elsewhere, we use real-world busses, like
AXI and CHI. For subsequent examples, we will default to using an A32D32 system with separate read
and write busses.

read try write write idle
A A A )

clk

e !
addr X/X/X/X/X read addr X/XXXX " write addr | X/WOO
e [T = O
wdata X/X/X/X/X\XXXXX/X)(XXXX/X/X/X/X _ wite data_ X/XXXXXX)O

o/ N/ N

Figure 1.5 MSOC1 reference bus protocol, with read and write examples

Figure 1.5 shows two example cycles for our MSOC1 reference bus. It is a synchronous bus with
transactions occurring on the positive clock edge. Each instance of an MSOC1 port in an A32D32
system uses the the net-level connections listed in Table 1.4.

Table 1.4 Net-level connections of an MSOC1 port in an A32D32 system

Connection Direction Use

addr[31:0] Output Selection of internal address; not all 32 bits are used
hwen Input Asserted during a write from the host to the target
hren Input Asserted during a read from the target to the host
wdata[31:0] Input Data to a target when writing or storing
rdata[31:0] Output Data read from a target when reading or loading

The signal directions shown are for a target. On an initiator, the net directions are reversed. A read
transaction occurs on any clock cycle when both hren and ack are asserted. A write occurs on any
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clock cycle when both hwen and ack are asserted. The example waveforms show a read followed by a
write. The write is extended by a clock cycle since the ack signal was not present on the first positive
edge when hwen was asserted.

The protocol is said to execute a handshake with external devices using the hren/hwen signals, which
are the request nets. The ack net is an acknowledge. In Chapter 2, we will present the essence of
common peripheral blocks using RTL examples. If a device can respond immediately, no ack signal is
required, as an equivalent can be generated with an OR of the hren and hwen nets. In practice,
contention, cache misses and operations on slow busses delay responses to the processor. Simple
processors stall entirely during this period, whereas advanced cores carry on with other work and can
process responses received out of order.

In Chapter 2, the examples mostly assume that no acknowledgement signal is required, meaning that
every addressed target must respond in one clock cycle with no exceptions. Also we assume that only
complete words are stored. The stores are always word aligned, so no lane qualifiers for bytes and half
words are needed. A misaligned access spans two adjacent word addresses, such as reading or
writing a 16-bit word at an odd-byte address.

1.2 Microcontrollers

The term ‘microcontroller’ briefly denoted an industrial controller based on a microprocessor, as
would be used for sequencing and control of a small plant or production line, such as a microbrewery.
Microprocessors integrated two of the historical quadrants on one piece of silicon (Table 1.1). As VLSI
capabilities grew, the remaining two quadrants - the main memory (primary storage) and the majority
of /O devices - could also be included. This was then called a microcontroller. It has all the system
parts on one piece of silicon. Itis a SoC.

One of the most famous microcontrollers is the Intel 8051 family, introduced in 1980. Such
microcontrollers differed from other microprocessors of the time because they had a rich set of
instructions for setting, clearing, toggling and testing individual bits in /O space. These were useful in
that they did not destroy register contents and were faster than the three-instruction sequence (load,
operate and store ) that would otherwise be needed. Today’s SoCs hardly benefit from such
instructions since the CPU rate is much faster than normally needed for bit-oriented device control.

Figure 1.6 is a block diagram of a first-generation microcontroller, like the one illustrated in Figure 1.7.
The device contains an entire computer, requiring externally only a power supply, an external clock
and reset components. All the remaining pins are usable for I/O, such as general-purpose I/0O

(GPIO, Section 2.7.3). A bus bond-out mode was also supported by some devices so that
memory-mapped devices can be connected externally.

Like a microcomputer, program code was stored permanently in the ROM. PROM and EPROM were
available in the original devices, as well as masked ROM. Today, a three-stage chain is often used for
booting, in which a mask-programmed ROM reads code from a low-performance flash memory into
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internal RAM. The code thus loaded can be the main application itself, but is often just a bootloader,
which itself loads the main operating system (Section 9.1).

- Clock
(crystal oscillator)

—— Reset capacitor

~
Power-on
Clock OTP
. reset .
oscillator (one-time
programmable)
PROM
\Y
(programmable
read-only
Microprocessor RAM emow)
8-bit originall e.g. 2 Kbytes
( ginally) (e.g ytes) (e.g. 8 Kbytes)
1 Internal A and D busses 1 1
Y v v
Counters and Programmable 1/0 Pins UART
) (GPIO)
Timers
\AAAAAAAAAAAAAAAAAAA
(N J

A

Y

Y

v

v

4
1/0 wires OR external bus Serial TX and RX

Figure 1.6 Structure of a typical microcontroller, a single-chip microcomputer

Figure 1.7 Hitachi HD6 14080 microcontroller chip from 1980. Such devices were often in very large, dual in-line (DIL) packages to make a large number of

GPIO pins available

A UART was the most advanced peripheral implemented in the early microcontrollers. Also
commonly found were pulse-width modulation (PWM) generators and pulse counters (Section 2.7.4).
These are still found on today’s SoCs, but are being used less and less, with USB and Ethernet taking

over in many applications.

Chip-and-pin smart cards contain a microcontroller. Many of these run a cut-down integer-only Java
virtual machine (VM). Figure 1.8 shows the contact plate. Clock, reset and power are provided
externally and all communication uses a protocol on the bidirectional data pin. Early variants required
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an external programming supply, on contact C6, but today’s devices have an on-chip voltage generator
and so there is now a spare pin on the contact plate (Section 8.6.1).

C1-VCC supply\ £ / C5 - Ground
C2 - Reset
esel —_ ( e C6 - (Vop)
-
C3- Clock— ———G7- Data InfOut

Figure 1.8 Contact plate for a smart card. The card reader supplies VCC power, clock and reset. Inputs and outputs are then made via the 1-bit bidirectional
data pin

1.3 Later Chapters

Chapter 2, ‘Processors, Memory and IP Blocks’, is a tour of the many basic building blocks on a SoC.
These are known as intellectual property (IP) blocks. They may be bespoke or off-the-shelf and
include memory, peripherals (I/0O devices) and processors.

Chapter 3, ‘SoC Interconnect’, reviews various approaches to connecting the IP blocks together, taking
into account the required throughput and latency requirements to meet the target SoC performance.

Chapter 4, ‘System Design Considerations’, reviews the basic principles of traffic engineering and
design techniques. These are important for guiding the design process and understanding the
expected effect of a design change. Debugging and security are also discussed.

Chapter 5, ‘Electronic System-Level Modelling’, explains the reasons and techniques for building and
using a high-level model of a SoC. This is called an electronic system-level (ESL) model. It can be used
to estimate performance and energy use and to develop the software that will run inside the SoC.

Chapter 6, ‘Architectural Design Exploration’, considers various approaches to implementing a given
function, including using custom processors and hardware accelerators. Advanced hardware design
tools are also discussed.

Chapter 7, ‘Formal Methods and Assertion-based Design’, examines mechanisms for avoiding
mistakes in chip design, comparing simulations with a formal proof of correctness.

Chapter 8, ‘Fabrication and Production’, presents the back-end steps in chip making, during which
synthesisable RTL is converted to masks for fabrication. It discusses techniques for squeezing
performance out of silicon and ensuring reliable operation despite variations in wafer processing,
supply voltage and operating temperature (PVT variations).

Chapter 9, ‘Putting Everything Together’, rounds up the book. It discusses bootstrapping the code into
anew SoC and getting a product ready for consumer use.

10
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1.4 SoC Design Flows

SoC design flow uses a tower of abstractions. Each component is represented at multiple levels with
an increasing amount of detail for lower levels. Figure 1.9 illustrates this for an invertor. Components
that are generated by synthesis tools, such as for signal buffering or repipelining, do not appear at all
in the higher levels.

wire Y = lA; VDD
Verilog Continuous Assign H
A '_ Y
'_
A Y A v ':
. . —I>Qf GND
1 0
Polygon Layout
Truth table Logic Symbol Schematic Diagram GND

Figure 1.9 An invertor viewed at various levels of abstraction

The design of a SoC requires tens of man years of effort, for even just a variation of a previous SoC. A
totally new design requires orders of magnitude greater effort and even then, it makes extensive use
of pre-existing blocks, known as intellectual property (IP) blocks. As will become clear in the chapter
on fabrication, Chapter 8, a new SoC requires half a dozen teams of engineers, each with a different
focus, such as hardware, software, packaging, documentation, physical design, verification and
testing. Figure 1.10 is an abstract view of the front end of the SoC design flow. This view starts with
the functional requirements determined by the marketing department of the company designing the
SoC and stops at the level of synthesisable RTL (Section 8.3.8).

1.4.1 Functional Model

A SoC begins with a functional specification. This typically comes from the marketing team at an
electronics company in the form of a product requirements document (PRD). The design aims are
specified in terms of high-level requirements that cover functionality, throughput, power
consumption and cost.

Numerous tools exist for capturing and managing requirements. Examples are IBM Engineering
Requirements Management DOORS Next, Orcanos and various tools that support Jenkins, SysML
and UML. These support hypertext links between various sub-documents stored in a revision control
system and various consistency checks. Ultimately, the design concept and performance needs are
transferred from the marketing person’s mind, the back of an envelope or a word processor document
into machine-readable form.

11
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Requirements from Marketing Team

y
. Desired
Functional Model output

Architectural partition, co-design and
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exporation Electronic System
(ESL) model u

Network synthesis,
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PreliminaryTiming Evaluation

Register Transfer

RTL Implementation -

y

Back-end procedures: logic synthesis, place, route, fabrication.
Figure 1.10 Front-end flow in SoC design

Any particular field of application or discipline will adopt its own approach at this level, but in general,
creating software to produce the desired output is a useful starting point. For instance, if the SoC is to
drive the mechanisms of an inkjet printer, then the desired output is the required signal waveforms
for the various stepper motors and ink cartridges. The desired output is shown in yellow on

Figure 1.10. The software used to generate the desired output is called a functional model. It is the
highest level model. Such a program will have little in common with the final product, except that it
produces the same desired output. The lower-level models and implementations should generate an
identical functional output and are progressively closer to the final product.

Often, we need to design a product with a total silicon area of under 100 mm?Z. This is a good size for a
SoC (as discussed in Section 8.11.1). In the past, there were significant obstacles when integrating
various forms of electronics on one chip. Difficulties arise, since analogue functions, low-noise
amplifiers, optronics and high-density memory have their own optimum wafer recipe for processing
the silicon. Progress has made this integration easier. Nonetheless, our example for this chapter, an
ADSL broadband modem, is from around 2008, when integration was not as mature.

12
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Figure 1.11 shows the main circuit board of a broadband modem hub made by Belkin. Figure 1.12is a
block diagram at the board level. The main components are a power supply, a Wi-Fi subsystem, a
four-port Ethernet switch and an ADSL modem. There is also a USB port, about eight LED indicators
and two push switches.

Figure 1.11 Main PCB of an ADSL home modem

DC
power Reset
jack  switch Ethernet RJ45 x 4 USB  Telephone RJ11

Connectors

Hybrid)
formey

I

WiFi
antenna

Filters
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plate {I]
I
Status LEDs WPS Switch Status LEDs

Figure 1.12 Main PCB structure of an ADSL home modem
In a product made today with identical functionality, the Wi-Fi subsystem would have far less PCB

area. Much of its functionality would be on the main SoC. Also, either the flash or the DRAM could be
on the main SoC, or perhaps die-stacked on top of it. All other aspects of the design would be the same.

13
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1.4.2 Architectural Partition

The collection of algorithms and functional requirements must be implemented using one or more
pieces of silicon. Each major piece of silicon contains one or more custom or standard
microprocessors. Some of the silicon has a custom design, some of it has a design common to different
devices in a product line, some of it has a standard design and some of it has a third-party design. A
breakdown of the major categories of integrated circuit is presented in Section 8.4. Chapter 4
explores the design partition problem.

The result of the first-pass architectural design process is a mapping of the design into physical
components. Certain electronic requirements, such as high voltage, microwave radio frequencies and
optimum memory bit density, are still fulfilled with optimised silicon (or GaAs) processes, but today,
almost everything is either a standard part or else can be mapped onto a single SoC. Beyond the
fundamental properties of silicon, a design partition must take into account non-technical aspects,
such as the stability of the requirements, the design lifetime, ease of reuse and other market forces,
such as whether all the required parts will continue to be available during the envisioned production
run. It is common for an end customer to require that there is a second-source supplier for any part to
prevent a shortage from significantly interrupting a production run. This second supplier may either
already be making an equivalent part or have signed the required contracts and warranties to ensure
it can start production at short notice.

When designing a subsystem, we must choose what to have as hardware, what to have as software
and whether custom or standard processors are needed. When designing the complete SoC, we must
think about sharing the subsystem load over the processors chosen. Estimates of the instruction fetch
and data bandwidth for each processor are needed when deciding how many memories to instantiate
and which processors operate out of which memories. The envisioned system data flow between
subsystems is another important consideration, affecting how the busses are interconnected and
whether a network-on-chip (NoC) is justified. For a SoC intended for a single target application, there
is greater certainty about the likely data flow compared with a general-purpose chip. Although the
transistor count is not a significant design constraint in modern VLSI, hardwired data paths are more
efficient than switched structures. Moreover, wiring length and hence, energy are minimised if less
areais used. A solution providing a non-blocking full-crossbar interconnection (Section 3.2.3) will
generally be over-engineered for all applications.

Energy efficiency is also often a critical consideration. Whether for a battery-powered device or a
server farm, low-power design principles are applicable and power control mechanisms affect the
design at all levels.

The functional requirements for the broadband modem are, essentially, its hardware and software
feature set. There may be requirements relating to its power consumption and throughput, but these
are likely to be of low concern because the unit is mains powered and performance is limited by the
low-speed interfaces (ADSL and Wi-Fi). There may be a requirement for the wired Ethernet to handle
local traffic at a full line rate of 100 Mbps per port full-duplex, but this would more than likely be
relaxed for a low-cost residential unit in favour of cost of goods.
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The cost of goods is the total amount paid by the manufacturer for all the parts that go into a product.
It includes the component costs, case costs and cost of the cardboard box, and is always a major
concern for a consumer product. Assembly and testing costs are also a consideration. Most digital
products are quite easy to test, since they can embody sophisticated self-test mechanisms.

The hardware features are all obvious from the final hardware design. The Wi-Fi has a diversity
antenna, which was a strong selling point in 2008, albeit for a considerable increase in cost of goods.
Today, all but the most basic designs have multiple antennae to overcome fading arising from
reflections and standing waves.

The software features include a firewall and DHCP server, internal web-based management HTML
server and so on. We will not cover these in this book. However, one significant feature that the
software needs to provide is a degree of flexibility against future changes. Changes could be protocol
or security enhancements, or perhaps regional variations to address parts of the world not originally
provisioned. A SoC design must anticipate such changes as far as possible by providing sufficient
hooks and general-purpose internal interfaces.

Another output available when all of the requirements and proposed algorithms are capturedin a
high-level software implementation is the total memory and execution cycle budget. The cycle budget
might typically be for a serial single-threaded implementation and hence, knowing the target clock
frequency for the SoC, the degree of parallelism required in the final implementation can be
estimated. Although these figures may vary by perhaps +30 per cent from the figure for the final SoC
target, insights at this high level can form a basis for feedback to the marketing team regarding the
likely final silicon cost and power consumption.

1.4.3 Architectural Partition and Co-design

Given the design requirements, an initial allocation of design features to pieces of silicon and IP blocks
within those chips must be made. Normally, we aim to create one SoC and supplement it with as few
standard parts as possible to form a board-level product.

There are two principal ways to solve the design partition problem:

1. Co-design: Implementing a manual partition between custom hardware and software for various
processors.

2. Co-synthesis: Automatically creating simple ‘device drivers’ and inter-block message formats to
match the automated partitioning decisions.

The partitioning decisions can, in theory, be automated. This is the co-synthesis approach. For
well-defined tasks, such as when the whole system functionality is fully described by a single
high-level application program, automatic partitioning works. It has been demonstrated in various
academic projects and is working today in cloud-based FPGA accelerators (Section 6.4). However,
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such techniques cannot yet replace human-guided partitioning for typical SoC projects, mainly due to
the lack of characterisation of the vast potential design space. There are also problems with
hard-to-quantify or intangible advantages of particular design decisions and their mutual interactions.

Industry today uses co-design, in which a senior engineer, the system architect, makes the
partitioning decisions.

In either approach, early and rapid feedback of energy and execution performance is needed. This
must be more accurate than the first indications from our initial software functional model. Only a
basic or moderate level of accuracy is needed initially, but the polarity of the derivatives is critically
important (Section 6.6). A basic level of accuracy is needed for comparing vastly different designs.
Accuracy in the polarity of the derivatives indicates whether an incremental change is for the better
or the worse. Incremental changes might be, for example, doubling a cache size, doubling the number
of cores or doubling the width of a data bus. We compare successive variants of the high-level
structure of a system in a process called architectural exploration (Section 6.2). If the power and
performance partial derivatives have the correct polarity for all major partitioning decisions, then
architectural exploration will lead to a good design point.

Typically, an ESL model is used for architectural exploration. We explore ESL modelling in Chapter 5.
Another name for such a model is a virtual platform. These models can accurately run the software
for the embedded cores with zero or very minor modification to the software. Multiple ESL models of
target system components are commonly used. These vary in their level of detail and modelling
performance. Various whole-system models can then be put together using different levels of
modelling for the various subsystems. The level of detail selected for a subsystem depends on what
performance metric or behavioural feature is currently of interest.

An important aspect of an ESL model is ease of editing and reconfiguration. The most popular
language for ESL models is C++ using the SystemC coding style (Section 5.3). After each edit, static
information, such as silicon area and standby power results, are recomputed. Then a test workload is
run on the model, and data are collected on dynamic performance and energy use.

1.4.4 1P Blocks

A SoC consists of an assembly of intellectual property (IP) blocks. The same is true for its high-level
ESL model. IP blocks are designed to be reusable over a large number of designs. They include CPUs,
RAMs and standard I/O devices such as for USB, Ethernet and UART. These will often be provided
with a per-use licence by an external supplier, notably Arm or Cadence. The IP blocks in a SoC also
include custom blocks that are locally generated specifically for the current application.

An IP block is supplied in various forms in parallel. A machine-readable data sheet has static
information, such as silicon area and the power consumption for various activation levels. A high-level
model is provided for the ESL. A synthesisable model or cycle-accurate model is provided for net-level
simulations, and a hard macro for the layout may be provided for critical high-performance

16



Chapter 1| Introduction to System-on-Chip

subsystems such as RAMs and CPUs. A test programme and documentation are also provided.
Chapter 2 is an in-depth review of IP blocks.

In architectural exploration, different combinations of processors, memory and bus structures are
considered in an attempt to find an implementation with good power and load balancing. A loosely
timed high-level model is sufficient for computing the performance of an architecture.

In detailed design, we select IP providers for all the functional blocks. Alternatively, previous in-house
designs can be used without paying a licence fee, or they can be freshly written.

1.4.5 Synthesis

As shown in the lower half of Figure 1.10, once an architecture has been chosen, implementation can
start. Implementation at this level needs to interconnect all the blocks that make up the design. This
will involve the final selection of standard parts for the board-level design and generating RTL for
custom IP blocks that have so far been modelled only at a high ESL level.

Synthesis is the process of automatically converting a high-level description of somethinginto a
lower-level form. A number of synthesis tools are typically used at this stage:

= A network synthesis tool is often used to generate memory maps and all the bus structures or
NoCs for interconnecting the IP blocks (Section 3.9).

= A memory synthesiser tool generates memories with the required number of bits and port
structure (Section 8.3.10).

® An HLS compiler is sometimes used to generate RTL designs from parts of the high-level model
(Section 6.9).

" Alogic synthesiser is used to convert the RTL to net-level circuits (Section 8.3.8), but much of the
simulation is run on the behavioural RTL model. The net-level synthesis is considered to be part of
the back-end flow.

In practice, the whole procedure may be iterative, with detailed results from a lower level of
implementation sometimes requiring changes at the architectural level, such as the size of scratchpad
RAMs.

1.4.6 Simulation
Different types of simulation are used at different levels of representation. Since synthesis steps
always expand the level of detail, it is faster to simulate the input level than the output level.

A synthesisable RTL model of the complete SoC can, in principle, be simulated with an RTL simulator
(Section 8.3.3). This will be slow. However, it should seldom be necessary, if most of the system can be
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simulated at a high level with an ESL model. In that case, an RTL implementation is used for only one
or two subsystems of interest.

Test bench components need to be coded before simulations can be run. These can be behavioural
models that are also suitable for ESL modelling. Sometimes they use data files collected from the real
world, such as signals from a telephone line in our broadband modem example.

Logic synthesis converts from behavioural RTL to structural RTL (Section 8.3.8). This results in at least
one further order of magnitude increase in detail and hence, simulations of the resulting netlist will
run 10x slower. Table 5.2 shows typical simulation speeds.

Apart from the input RTL, the other main input to logic synthesis is the chosen target technology
library and directives about what to optimise (area, power or performance). A target technology
library is normally a machine-readable semi-custom standard cell library (Section 8.4.1). It has an
associated fabrication geometry (e.g. 28 nm) and supply voltage range (e.g. 0.9 to 1.1 V).

1.4.7 Back-end Flow
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in-house

Timing Closureg
Path H
Instruction Set S —_—_——————— —
Simulator(s) ( always @(posedge clk) begin )
! M<=r1+2; |
= it (8>4)r2<=0; |
|
|

RTL
Simulation

PASS/FAIL; [ \
H __ | AND2 g102(023, w3, r[4]); |

OR2 g103(024, 023, 1[5]); |
|

|

Gate-level
RTL simulatios

T 7| DFF d99(025, clk, rst, 024);

BTRUCTURAL RTL NETLIST

Static-timing | | Annotated RTL
analyser (STA| simulation
ANNOTATED RTL NETLIS

\
| AND2 #12 g102(023, w3, r[4]); |
_ OR2 #319103(024, 023, 1[5]); |
T 7| DFF #121d99(025, clk, rst, 024); |
[ |

-

—

e

Figure 1.13 Overall design and manufacturing flow for a SoC
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Figure 1.13 shows a typical overall design and manufacturing flow from design capture to
application-specific integrated circuit (ASIC) fabrication. This might take 6 months and 50 man years.
A small FPGA flow (Section 8.5.2), on the other hand, can be executed in just a few days by one person.

Once the design is in synthesisable RTL form, the so-called back-end flows commence. Apart from
preliminary logic synthesis, a back-end flow is normally handled by a separate design team. Parts of
the back-end flow may be outsourced to other companies. Mask making and foundry services are
nearly always outsourced, although certain very large players can do everything in-house (e.g. Intel
and Samsung). The back-end steps are discussed in Chapter 8. However, often changes are required
at the front end due to discoveries made in the back end. Most notable is timing closure

(Section 8.12.16) and testability (Section 8.8.2). Timing closure refers to making sure that each
subsystem can clock at its target frequency in all PVT conditions (Section 8.4.4). Modern on-chip bus
protocols are designed to tolerate issues arising from meeting timing closure with minimal redesign,
albeit with a minor increase in latency and perhaps loss in throughput (Section 4.4.2 and Section 3.1.3).

The output from RTL synthesis is a structural netlist that uses a target technology library. In other
words, it is almost the complete circuit diagram of the SoC in terms of individual logic gates. It is not
the entire circuit diagram, since components such as CPU cores are typically supplied in hard macro
form (Section 8.4.2). Essentially, they look like massive logic gates. The internal circuits for the logic
gates in alibrary are normally available under a library licence, but this may not be possible for hard
macros.

The placement step gives a 2-D coordinate to each component. This is often guided by an engineer
who makes a high-level floor plan, which divides a SoC into tens of regions. Placement is then
automatic within each region and is performed to minimise wiring length. If multiple power voltages
and domains are used (Section 4.6.10), placement must normally aim to put blocks with common
power supplies close to each other for ease of wiring.

The routing step selects the route taken by each net. Normally digital nets are on the lowest two
layers of metal, one being for predominantly vertical runs and the other for predominantly horizontal
runs. Interlayer vias are installed if a net needs to change direction. Areas with too many nets may not
be routable and a modified placement may be needed. Beyond that goal, minimising the wiring length
and the number of layer swaps are secondary goals. The upper layers of metal are used for power
distribution. Again, the routing tool will design these layers. A very important net is the clock for each
subsystem. The router may use a layer just for clock nets, since this makes it easy to deliver a clock
with low skew (Section 4.9.5).

Once routing is complete, an annotated netlist may be extracted by another tool. This tool calculates
the actual load capacitance on each net. This is important both for power estimation and timing
closure, since the performance of a gate degrades as the length of its output net is increased

(Section 4.6.4). The RTL can then be back-annotated with actual implementation gate delays to
provide a fairly precise power and performance model. Design changes are needed if performance is
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insufficient. For instance, a gate driving a long net could be changed to a similar gate with increased
drive power, but with slightly greater area, so that a row of adjacent gates becomes slightly displaced.

Fabricating masks is commonly the most expensive single step of the design flow (e.g. £1 million), so
must be correct first time. As mentioned, fabricating silicon dies is performed in-house by large
companies, but most companies use third-party foundries, notably UMC and TSMC. The foundries
can also test chips (Section 8.8).

At all stages of the design flow (both front end and back end), a huge library of bespoke tests is run
every night and any changes that cause a previously successful test to fail (regressions) are
automatically reported to the project manager. Many systems can automatically determine which
engineer most likely made the edit that caused the regression and will send them an email to ask them
to review it (Section 7.2.3).

1.4.8 Example: A Cell Phone
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Figure 1.14 General internal view of a mobile phone (left) and views of both sides of the main circuit board (centre and right). Highlighted in red are the main
SoC, which contains several Arm processors, and a multi-chip module containing several memory chips (a proprietary mix of DRAM, SRAM and flash)

A modern mobile phone contains eight or more radio transceivers, including the various cell phone
standards, GPS, Wi-Fi, near-field and Bluetooth. Figure 1.14 shows the internals of a typical phone.
The main circuit board contains more than 50 pieces of silicon to support the various radio standards.
These are on both sides of the main board and are covered with shielding cans, which have been lifted

20



Chapter 1| Introduction to System-on-Chip

off for the photo. The largest chip package is a multi-chip module (MCM) (Section 8.9.1) containing
several memory devices. The second largest device is the main SoC.

The bill of materials (BoM) for a modern smartphone has the following components:
= main SoC: the application processor with die-stacked or nearby SRAM, flash and DRAM

® display with integrated capacitive touchscreen (instead of an older physical keypad) and
miscellaneous push buttons

= haptic vibrator, audio ringers, loudspeaker, earphones and microphones in noise-cancelling pairs or
arrays

" multimedia codecs (audiovisual capture and replay in several formats with hardware
acceleration, Section 6.4)

= radiointerfaces: GSM (three or four bands), Bluetooth, IEEE 802.11, GPS, near-field (contactless
ticketing and payments), etc., plus antennas for each (some shared)

= power management: battery charger and regulator, contactless charging through near-field
antenna, processor speed governor, die temperature sensor(s), on, off, and flight modes

= infrared IrDA port (older units), magnetic compass, barometer, gravity direction sensor and
accelerometer

® front and rear cameras, fingerprint camera, torch and ambient light sensor

= memory card slot and SIM card slot

= physical connectors: USB, power and headset

= case, main battery, secondary battery and PCBs

= Javaor Dalvik VM, operating system, bundled applications, security certificates, etc.

1.4.9 SoC Example: Helium 210

A platform chip is a SoC that is used in a number of products although chunks of it might be turned off
for a particular application. For example, the USB port might not be available on a portable media
player despite being on the core chip. A platform chip is the modern equivalent of a microcontroller. It
is a flexible chip that can be programmed for a number of embedded applications. The set of

components is the same as for a microcontroller, but each has far more complexity, for example there
could be a 32-bit processor instead of an 8-bit one. In addition, rather than putting a microcontroller
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on a PCB as the heart of the system, the whole system is placed on the same piece of silicon as the
platform components. This gives us a SoC.

The example illustrated in Figure 1.15 has two Arm processors and two DSP processors. Each Arm
has a local cache and both store their programs and data in the same off-chip DRAM. In the block
diagram of this in Figure 1.16 the left-hand Arm is used as an /O processor and so is connected to a
variety of standard peripherals. In a typical application, many of the peripherals are unused and so
held in a powered-down mode. The right-hand Arm is the system controller. It can access all the chip’s
resources over various bus bridges. It can access off-chip devices, such as an LCD display or keyboard
via a general-purpose analogue-to-digital local bus.

DualARM Cores
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Figure 1.15 An Apple SoC with two Arm and three GPU cores. It was made by arch-rival Samsung

Bus bridges map part of one processor’s memory map into that of another so that cycles can be
executed in the other’s space, albeit with some delay and loss of performance. A FIFO bus bridge
contains its own transaction queue of read or write operations awaiting completion.

The twin DSP devices run completely out of on-chip SRAM. Such SRAM may dominate the die area of
the chip. If both are fetching instructions from the same port of the same RAM, then they have to
execute the same program in lockstep or else have their own local cache to avoid a huge loss of
performance due to bus contention.

The rest of the system is normally swept up onto the same piece of silicon and this is denoted with the
special function peripheral. This is the sole part of the design that varies from product to product. The
same core set of components can be be used for all sorts of different products, such as iPods, digital
cameras and ADSL modems, as shown in Figure 1.17.
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Figure 1.16 A platform chip example: the Virata Helium 210, as used in many ADSL modems

Figure 1.17 Helium chip as part of a home gateway ADSL modem (partially masked by the 802.11 module)

At the architectural design stage of an application-specific SoC, to save the cost of a full crossbar
matrix interconnect, devices can be allocated to busses, if we know the expected access and traffic
patterns. Commonly there is one main bus master per bus. The bus master is the device that
generates the address for the next data movement (read or write operation). The Helium chip
illustrates this design pattern.
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Busses are connected to bridges, but crossing a bridge has latency and also uses up bandwidth on
both busses. Devices should be allocated to busses so that inter-bus traffic is minimised based on a
priori knowledge of likely access patterns. Lower-speed busses may go off-chip.

SoC Example: Tablet or Display Panel Device

Another example of a platform chip is illustrated in Figure 1.18. This device was used in a wide variety
of consumer devices, ranging from fire alarm control panels to low-end tablets. It integrates two
400-MHz Arm cores and a large number of DMA-capable peripheral controllers using a central bus
matrix. For this component, the wide variety of application scenarios implies that traffic flow patterns
are not accurately known at design time. This motivates the use of a central switching matrix.
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Figure 1.18 Another platform chip intended for use in thin-client display devices, such as a tablet

Both examples demonstrate that DRAM is always an important component that is generally off-chip
as a dedicated part. Today, some on-chip DRAM is used, either on the SoC itself or die-stacked
(Section 8.9.1).

1.5 SoC Technology

In 1965, Gordon Moore predicted that the number of transistors on a silicon chip would double every
two years. Figure 1.19 reproduces one of the many scatter plots of chip sizes against dates that litter
the Internet. These demonstrate that his vision was roughly correct. This phenomenon is now well
known as Moore’s law (Section 8.2).
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Figure 1.19 Moore’s law (Section 8.2)

The most common implementation technique for SoCs is called semi-custom and uses a standard cell
library (Section 8.4.1). The other main alternative is the Field Programmable Gate Array (FPGA),
where, instead of being hard-coded in the manufacturing masks, the user’s logic is downloaded into
the silicon into programmable logic at power-up time (Section 8.5.2).

Hybrid devices, known as super-FPGAs, are also available. In these the silicon area is partitioned
between a large number of everyday IP blocks and general purpose, programmable logic.

For such hardware, we use the terms ‘hard’ and ‘soft’ to differentiate between those functions that
are determined by the fabrication masks and those that are loaded into the programmable fabric.
Before super-FPGAs, it was common to put so-called soft CPU cores in the programmable logic, but
this is not an efficient use of silicon or electricity for everyday cores. The super-FPGA always has
processors, caches, the DRAM controller and a selection of network interfaces as hard IP blocks,
since these are always needed.

The high cost of ASIC masks now makes FPGAs suitable for most medium-volume production runs
(e.g. sub 10 000 units), which includes most recording studio equipment and passenger-in-the-road
detection for high-end cars. The dark silicon trend means we can put all the IP blocks onto one chip,
provided we leave them mostly turned off.
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1.6 Summary

This chapter has reviewed the basic concepts of digital computers and chip technology. We have
introduced some terminology that will be discussed further in the following chapters. A SoC
essentially consists of a collection of IP blocks and an associated interconnect. Many of the IP blocks
are used in several SoC designs, and they are sourced from IP block vendors. Others are
application-specific and embody proprietary IP.

The next chapter will review three classes of IP block: processors, memory and everything else. The
chapter after that will discuss how to interconnect IP blocks.

1.6.1 Exercises
1. What is the addressable space of an A32D32 processor in terms of bytes and words?

2. Why is the register space of an I/O device typically mapped so that its base address is a multiple of
its length?

3. What are the differences between a PC, a microprocessor, a SoC and a microcontroller? Are they
clearly distinct?

4. How would you estimate with a spreadsheet the external DRAM bandwidth needed by a SoC?

5. How could some peripheral devices be made unaddressable by some cores (Section 7.7)?
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As mentioned in the introduction, a SoC is essentially an assembly of IP blocks. IP blocks may be
reusable over a large number of designs. They may include CPUs, RAMs and standard 1/O devices
such as USB, Ethernet and UART. This chapter will review all of these main forms of IP block in terms
of functionality and the external connections they need. We provide illustrative TLM diagrams and
RTL code fragments for many of the more simple ones. Bus fabric components are covered in detail in
a subsequent chapter (Chapter 3).

2.1 Processor Cores

A SoC typically contains at least one general-purpose CPU. It may be supplied in synthesisable or a
hard macro form (Section 8.4.2). In low-performance designs, the unit of instantiation is just a
cacheless CPU. The basic system, ignoring I/0O, is then as shown in Figure 2.1(a). The CPU just needs to
be connected to the main memory. A single cache for both data and instruction is illustrated in

Figure 2.1(b), but for mainstream and high-performance systems, the split between the instruction
cache (I-cache) and data cache (D-cache) of Figure 2.1(c) is now more common.
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Figure 2.1 TLM connection diagrams for CPU and memory configurations: (a) direct connection, (b) with a cache, (c) with a split cache and (d) two cores with
a shared L2 cache. The fan-in to the TLM socket denotes that the bandwidth is shared. In reality, debug and managements ports also need to be connected

With both instructions and data being stored in the same memory and with only one word being
transferable at a time over the interface, the architecture of Figure 2.1(a) has an intrinsic structural
hazard (Section 6.3). This hazard is called the von Neumann bottleneck. It raises no issues for
register-to-register operations, but can affect any form of load or store instruction. The advantage of
a split cache is called the Harvard advantage, which arises from holding programs and data in
different memories, as did the early computers constructed at Harvard. The British computers
constructed at Manchester and Cambridge used the von Neumann architecture with one memory for
both. Two minor disadvantages of the Harvard architecture are: (1) that any form of program loader
or self-modifying code needs a back door to be able to write to program memory and (2) that a static
partition of memory resources reduces the effective capacity since one will always run out before the
other (see statistical multiplexing gain, Section 4.3.3). Further advantages of having separate |- and
D-caches are that each can be physically located near where their data will be used, reducing wiring
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distance and eliminating a multiplexing stage for the address input. The I-cache is next to the
instruction decode logic and the D-cache next to the ALU.

The first-level or L1 instruction and data caches are often tightly coupled to the CPU. The composition
is known as a CPU core or just a core for short. Such a core is then the unit of instantiation at the SoC
level. This is like Figure 2.1(a) from the system integrator’s point of view. The core may also have a
memory management unit (MMU; Section 2.2.1) or other memory protection units with any
associated translation lookaside buffers (TLBs; Section 2.2.1). A tightly coupled coprocessor, such as a
floating point unit (FPU; Section 6.4) or a custom accelerator (Section 6.4), can also be included in the
instantiated component. As well as being atomic from the system integrator’s point of view, these
components are also tightly coupled in the sense that they are mutually optimised for performance.
The clock distribution network (Section 4.9.5) is shared, and critical interconnections, such as the byte
alignment logic on the data cache read port, may potentially have been optimised using full-custom
techniques (Section 8.4). However, for maximum flexibility in SoC design, the coprocessor
connections can be wired using the general IP interconnection tooling. This is shown in Figure 2.2.
Apart from accelerators, another way to increase processor functionality is by extending the custom
instruction set (Section 2.1.3).

=

Primary
storage

Figure 2.2 TLM diagrams for a CPU core with integrated first-level caches and external coprocessor connections

The level-2 (L2) caches and associated snoop controllers for cache consistency (Section 2.4.1) are
likely to be instantiated as separate IP blocks, as shown in Figure 2.1(d). This gives the SoC designer
the freedom to experiment with cache structures and bus bandwidths. In these TLM diagrams, where
two arrows connect to one TLM port of a component, this is normally taken to denote that the bus
bandwidth at that point is shared, but not always (as will be explained in Section 5.4.5). Having a
dedicated L2 per core is also a sensible design, as explored in Section 6.6.1.

As well as access to primary storage, a SoC designer needs to implement a number of other

connections, including clock, reset, interrupts and a debug port. The debug port provides back door
access to the CPU for register inspection, single stepping, triggering and trace logging (Section 4.7).
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2.1.1 ISAs

Any processor family is defined by its programmer’s view (PV) instruction set architecture (ISA). The
PV includes the registers and memories that a low-level software programmer needs to know about
and which they manipulate with instructions. It does not include any details of the microarchitecture,
like the registers used for pipelining or present only in some particular hardware implementation of
the ISA. The ISA defines both the user-visible registers and the set of available instructions. The two
most prevalent ISAs used today are Arm and x86, but both of these have numerous variations. For
instance, early Arm architectures supported only 8- and 32-bit data with 16-bit support being added
in a later variant. Most recently, the Arm AArché4 architecture with 64-bit addresses was released.

Within each variation of an ISA, multiple implementations usefully co-exist. An ISA can be
implemented with different microarchitectures that vary in area, energy and performance. Power
consumption tends to be proportional to area, but performance always grows sublinearly. In other
words, doubling the processor complexity gives less than a factor of 2 improvement in throughput.
Pollack’s rule of thumb, which is widely quoted, gives the exponent as 0.5. Two cores give twice the
performance for twice the power, but, following Pollack, getting twice the performance from a single
core requires 4 x the power. Hence, if a program can be made to run on multiple cores, then this is
better than using fewer but more complex cores.

However, automatic parallelisation of existing programs is difficult. This is often a result of the way
they were coded and the programming languages used. Hence, to achieve high performance with
legacy code, so-called ‘brawny’ cores are needed [1]. They have high complexity but are in mainstream
use, predominantly using the x86 architecture. Note that the total energy used by the system is
divided over the memory system and the cores, which may use roughly equal amounts of energy in
some systems. The energy cost of moving data between the memory and core is increasingly
significant. The amount of memory traffic for an application is not altered by the processor design (to
a first approximation, ignoring prefetches and mispredicts); hence, the core complexity affects less
than half the power budget. Indeed, the energy used for memory and communication is becoming
increasingly dominant.

These topics are explored further in Section 6.6.2.

High-performance implementations of cores may have powerful but less-frequently used instructions
in hardware; the same instructions are emulated on the lower-performance implementations. If such
aninstruction is missing from the implemented set, an emulation exception is raised and tightly
coupled machine code or microcode is executed to provide the functionality. Examples are
vector-processing instructions.

Early devices relied on complex instruction set computing (CISC). Such ISAs had complex and
powerful instructions that helped minimise code size but whose execution logic extended the critical
path (Section 4.4.2) and hence, reduced the clock frequency. Also, many of these instructions were
seldom used. This is not a good design since it penalises the performance of the frequently used
instructions. As a result, so-called reduced instruction set computing (RISC) was introduced,
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primarily in the early 1980s (although IBM had a RISC project in the 1960s). As well as a streamlined
instruction set, RISC aimed to achieve one instruction per clock cycle (IPC). Hence, bus protocols that
can transfer a word every clock cycle were needed and a split cache was also deployed to maintain IPC
at unity during loads and stores. Famous RISC designs from that period were produced by MIPS,
SPARC and Arm, with the first Arm silicon in operation in 1985.

Modern implementations of CISC generally use a conversion phase that expands a CISC instruction to
one or more RISC-like instructions. There are three places in which the translation can be performed:

1. In software as part of the compiler or in the operating system loader.

2. In hardware, pre-instruction cache: An instruction is expanded on cache miss; however, this adds
an overhead to branch target identification and checkpointing during exception handling.

3. Post-instruction cache: The expansion is handled using microcode.

The third option is most commonly used in CISC implementations. An expanded CISC instruction is
often called a uop or micro-operation, especially in the context of x86 architectures. Simple CISC
instructions, such as a register transfer, are converted to a single uop, whereas more complex
instructions, such as a block move or a division, are converted to entry points into a microcode ROM,
which stores a program with 2 to 20 or so uops. Such cores translate each CISC instruction every time
itis used. Assuming an unchanged 95 per cent hit rate in the instruction cache, only 5 per cent of that
energy would be needed under option 2 and none at all under option 1. The primary explanation for
the world being stuck with these relatively poor designs is market inertia.

2.1.2 Vector Instructions

The energy used by high-performance core implementations is dominated by instruction fetch,
decode and scheduling. The actual computation energy in ALUs and register files is typically a small
percentage (5-10 per cent). This is the fundamental reason why hardwired accelerators perform so
much more efficiently (Section 6.4). It is also a fundamental motivation for vector-processing ISA
extensions.

A vector instruction is also known as a SIMD instruction, since a single instruction operates on
multiple data words. Vector instructions implement massively parallel operations on the normal
register file, manipulating many registers at once. Alternatively, they operate on additional registers
in the PV. (However, register renaming in super-scalar CPUs clouds this distinction (Section 2.2).) The
register file can typically be treated as multiple, shorter registers. For instance a swathe of a 32-bit
register file might be treated as 4x as many 8-bit registers. By operating on, for example, 16 or 32
registers at once, the fetch-execute overhead is amortised by the same factor. Hence, vector
arithmetic of this nature can approach the efficiency of custom accelerators. If a processor has
load-multiple and store-multiple instructions, like the Arm family, a multi-register block of data can be
transferred to and from the memory system in one instruction.
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2.1.3 Custom Instructions

Processors are either placed on a SoC as hard macros (Section 8.4.2) or in synthesisable form. A hard
macro is carefully optimised by the IP supplier and cannot be changed by the SoC designer. However,
so-called soft cores are supplied in RTL form and can be changed in various ways by the SoC designer,
although parts of the RTL may be encrypted or obfuscated to protect IP. One change, commonly
supported, is for the SoC designer to add one or more custom instructions [2]. These share the
instruction fetch and decode logic of the standard instructions, but can access new registers, ALUs or
custom resources. The mapping for the instruction set opcode typically has various gaps where new
operations can be added. The assembler, debugger and other parts of the tool chain can likewise be
augmented to exploit new instructions. The benefits of custom instructions are explored alongside
custom coprocessors in Section 6.4.1.

2.1.4 The Classic Five-stage Pipeline
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Figure 2.3 Main data paths in a generic five-stage RISC microarchitecture, excluding the back sides of the cache and MMU. Instruction field bit-extracts to
control the multiplexes and ALU are not shown

Figure 2.3 is a diagram of a generic microarchitecture for the classic five-stage pipeline. It actually
shows six stages, since both the IDO and ID1 stages are used. Getting back to five involves combining
the IDO and ID1 stages, but there are various specific ways of doing this, such as making the main
register file combinational for reads or using single-cycle cache access. The five pipeline stages are:
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® Instruction fetch (IF): The next instruction is fetched from the I-cache, which behaves like a
synchronous SRAM (Section 2.6.4), in that the address must be provided at least one cycle before
the instruction comes out. Figure 2.3 shows read operations with a latency of two for both caches.

® |nstruction decode (ID) or register fetch (RF): Designs vary according to how the instruction
decode is precisely pipelined, but there is at least one cycle between the instruction arriving and
the register data being input into the ALU.

= Execute (EX): The ALU combines the operands from the register file. The register on the arithmetic
and logic unit (ALU) result bus makes this a pipeline stage.

= Memory access (MA): Again, since read access to the data cache has a latency of two, the memory
access pipeline stage actually takes two cycles. However, in some designs, this is a single-cycle
operation.

= Writeback (WB): The writeback stage is just padding to equalise the delay from the output of the
ALU for the computed results with the data cache load delay (assuming a two-cycle data cache).
The padding ensures that load and arithmetic/logic instructions can be placed back-to-back and
that at most one register in the main file needs to be written per clock cycle.

These simple RISC designs have two main types of pipeline hazard. A control hazard occurs when a
conditional branch predicate is not known at the time it is needed. Hence, there is a good chance that
incorrect instructions are fetched and decoded. This is overcome by suppressing the stores and
register file updates from such instructions so that they effectively behave as no-ops.

A data hazard occurs when the result of a computation or load is not in its intended place in the
register file until two cycles later. This is solved for ALU operations with the two forwarding paths
from the output of the ALU and the output of the writeback register. For loads, it cannot be solved for
immediate use and a pipeline bubble is needed (the compiler optimiser should minimise this use
pattern as far as possible), but it can be forwarded from two cycles before. The forwarding
multiplexors use simple pattern matching across successive stages of the instruction pipeline shown
at the top of the figure.

2.2 Super-scalar Processors

A super-scalar processor can execute more than one instruction per clock cycle (IPC). The average is
around 2 or 3 with a peak of 6, depending on the nature of the program being run. However,
first-generation microprocessors required several clock cycles for each bus cycle. Since the average
number of cycles per instruction was at least one, performance was measured in clock cycles per
instruction (CPI), which is the reciprocal of the IPC.

Figure 2.4 shows the main features of a super-scalar microarchitecture. Such a processor needs to be
able to read multiple instructions from the instruction cache in one clock cycle. The diagram shows
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Figure 2.4 Key components of a super-scalar CPU core, excluding the back sides of the cache and MMU

three, but a power of 2 is more common. A branch target is not normally aligned to the instruction
width of the I-cache, so realignment is typically needed. Using a FIFO for this can help overcome other
sources of pipeline bubble.

The execution unit consists of some number of reservation stations. These can be identical in
structure, but often are specialised to some degree. The diagram shows four types: load, store,
integer ALU and floating-point ALU, but designs vary greatly in detail. Although essential for the
instruction cache, it is usual for the data cache to also support super-scalar operation. The diagram
shows paths for three transactions on the data cache per clock cycle. This total does not include the
back-side cache load/evict operations.

Instructions are placed in empty reservation stations. Complex matching logic triggers a reservation
station to execute its saved instruction as soon as its operands are ready. Execution will typically take
several clock cycles for a complex instruction, such as a 64-bit multiply or floating-point add. A
reservation station is not typically fully pipelined (Section 6.3), so that it is busy until the result is
ready. The provisioning mix of reservation stations must match the mix of instructions commonly
found in programs. For a design to have a balanced throughput, this mix must be weighted by how
long a reservation station is busy per operation. Generally, every fifth instruction is a branch and
every third is a load or store. Loads are at least twice as common as stores.

When aresult is ready, the reservation station or stations that depend on the new result become
ready to run. These will not necessarily be the next instructions in the original program sequence.
Hence, we achieve out-of-order instruction execution. In general, the execution times for different
instructions are neither equal nor predictable. Load and store stations have a variable execution time
due to the complex behaviour of caches and DRAM. By executing an instruction as soon as its
operands are ready, the hardware dynamically adapts to the behaviour of memory. Certain
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operations at a reservation station can have a variable latency as well. For example, for a division, the
number of cycles depends on the bit position of the most significant 1, because, in a typical
mainstream division algorithm, the denominator must be left-shifted until it is greater than or equal to
the numerator (which takes forever when dividing by zero!).

Reservation stations operate on virtual registers, not the physical PV registers. A PV register could be
updated several times within the window of instructions spread out within the core. This can often be
tens of instructions. This is possible only if several virtual registers alias one PV register, which is
called register renaming. The mapping at any instant is held in complex scoreboarding logic. Move
operations that merely transfer data between registers can be implemented as just an update to the
scoreboard structure, if is clear from the forward instruction window that only one copy needs to be
kept.

For an average branch instruction density of about one fifth, four basic blocks are processed
simultaneously for an instruction window of 20. This is possible without parallel speculation down
multiple flows of control by accurately predicting which way branches will go. The predictions are
made by a specialist branch direction cache that monitors the patterns of flow control. If this is
accurate to about 0.99 (a typical figure) then, with four branches in a window, the overall
misprediction ratio is 1 —0.994 ~ 0.04. Hence, 4 per cent of instruction executions are wasted and
their results must be discarded.

Keeping track of correct execution is handled using the retirement register file. This minimally
contains the retirement program counter (PC). It contains also either a copy of the PV at that PC value
or else a sufficient snapshot of the scoreboarding structure that describes which virtual registers
contain equivalent information. The retirement PC denotes the point at which all previous
instructions have been successfully executed along the correct control flow. For a branch mispredict
or another error, a super-scalar processor discards everything that is in flight and rolls back execution
by copying the retirement PC to the fetcher PC. Likewise, PV registers that are needed but not in
virtual registers are fetched from the retirement register file.

The multiple ALUs and copies of registers in a super-scalar processor have a correspondingly larger
number of control inputs compared with a simple processor that only has one instance, or fewer
instances, of each component. Rather than on-the-fly parallelism discovery within a standard
instruction stream, the main alternative is to use a very long instruction word (VLIW) processor. In
these architectures, individual data-path components are explicitly driven in parallel using wide
instructions for which the concurrency has been statically optimised, at compile time, by the
assembler. Such architectures save energy and silicon area because the interleaving is done off-line.
Although it may seem that using fewer but wider instructions could achieve a roughly equivalent
instruction encoding efficiency, a naive design will give rise to a low entropy stream due to commonly
repeating patterns. Explicitly encoding something that can be readily inferred is bound to be
inefficient. As with high-level synthesis (HLS) (Section 6.9), a static schedule, generated at compile
time, cannot efficiently adapt to out-of-order data returned from today’s complex memory systems.
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A high-performance microprocessor requires much more from its memory system than the simple
read/write byte/word needs of a low-performance core. It will typically have more than one load
station and also support vector instructions, both of which require greater data bandwidth from the
I-cache. It will also be able to exploit an out-of-order read service discipline. Out-of-order operation
also requires sequential consistency interlocks (Section 4.5) to ensure that reads and writes to the
same address follow the correct logical ordering. Many of these details are hidden from the SoC
designer if the L1 cache is part of the same IP block as the microprocessor. This is a motivation for
using the term ‘core’ to denote the combination of a microprocessor and first-level caches, but other
authors use ‘core’ to denote just a cacheless microprocessor.

2.2.1 Virtual Memory Management Units: MMU and IOMMU

A memory management unit (MMU) translates virtual addresses into physical addresses. A simplistic
TLM diagram is shown in the top half of Figure 2.5. However, in reality, a decision has to be made
about whether each cache operates on virtual or physical addresses. A common configuration is
shown in the bottom half of Figure 2.5. Here, the L1 caches operate on virtual addresses whereas the
L2 cache operates on physical addresses. The figure also shows the necessary secondary connection
to allow the control and configuration registers to be updated by the core. If an L1 cache operates on
virtual addresses, the MMU is not part of the performance-critical front-side operations. Using Arm
technology, such updates are made via the coprocessor interface, so the MMU of a core appears as a
COprocessor.
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Figure 2.5 TLM connection diagrams for a CPU and memory management unit (MMU): (a) naive view and (b) one possible cache arrangement

An MMU contains a cache of recently translated addresses known as the translation lookaside buffer
(TLB). In most processor architectures, misses in this cache are serviced entirely using hardware
inside the MMU, which includes a root translation register and table walking logic that uses back-side
operations to load the TLB. The alternative, as used by MIPS processors, is for the TLB to be filled with
software via a translation fault exception. Having physical addresses in the L2 cache is not always the
best design. The cache miss performance penalty, whether pages are to be mapped more than once
and how they are shared between cores must also be considered. Such decisions impact only to a
small extent the overall SoC design and vary according to the need for a cache-consistent DMA and
accelerators (Section 6.4).
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Recently, systems have started including an I/O memory management unit (IOMMU) for
input/output operations. It typically operates in two directions: it controls memory mapping of 1/O
devices into a processor’s address space and it controls what regions of primary storage are
addressable by DMA from I/O devices.

Two motivations for an IOMMU are virtualisation and pluggable devices. With the increased use of
hypervisors (Section 4.9) to enable multiple operating systems to run at once on a computing device, a
layer below the operating system is required to virtualise the physical devices, so that, to some extent
at least, the device drivers for specialist devices are embodied above the virtualisation layer. With
DMA-capable pluggable devices, such as recent versions of Firewire and Thunderbolt, foreign
hardware can potentially have unrestricted access to the entire memory contents in the absence of an
IOMMU.

Low-power systems may use a memory protection unit (MPU) (Section 4.9) instead of an MMU to
provide some level of security.

2.3 Multi-core Processing

A chip multiprocessor (CMP) has more than one CPU core on one piece of silicon. For a symmetric
multiprocessor (SMP), the cores are identical. Although the cores may be identical and see a global
flat address space for primary storage, each may have faster access to some local memory than to the
local memories of other cores or to centralised memory, which results in non-uniform memory access
(NUMA).

Having more than one CPU core is an energy-efficient approach for increasing performance. Another
phrasing of Pollack’s rule, compared with that in Section 2.1.1, is to say that energy use in a von
Neumann CPU grows with the square of its IPC. However, using multiple cores can result in close to
linear growth. This contrasts with the increase in energy consumption, which is roughly linearly
proportional to the increase in complexity, which in this context refers to the amount of processor
logic, i.e. its area. Note that just clocking faster requires at least quadratic energy use (Section 4.6.8).

Computer architectures for parallel programming have converged on cache-consistent shared
memories. This is one practical implementation of a so-called parallel random access machine (PRAM,;
Figure 2.6) [3]. Each processor operates in parallel and has random access to the entire primary store.
The memory is partitioned into atomic units (cache lines in contemporary implementations), such that
writes of all bits occur together. The interconnect imposes some model of sequential consistency
(Section 4.5), which, in the baseline model, is that every change to a word is visible to every other
processor the cycle after it is written. A clock or orchestration unit keeps each processor in lockstep,
to some granularity. In the baseline model, reads alternate with writes and all cores stop when any
core executes a halt instruction. However, in bulk synchronous processing (BSP) [4], the granularity is
coarser, so that hundreds of instructions may be executed before the processors are synchronised.
These architectures are not mainstream, either in terms of implementation or high-level language
support. However, some CPU vendors have implemented hardware transactional memory, which is
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similar; the processors can work on multiple cache lines before atomically writing them all out to
primary store (raising an exception for any clashes).
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Figure 2.6 A generalised PRAM model of computing. A number of synchronous processors, each with some private local store, make random access and read
and write operations on shared memory that has many atomic locations of some size. The interconnect implements some variant of coherence (value and
sequential consistency)

There is academic debate over whether cache consistency is really necessary in real-world systems.
For a large majority of parallel programs and algorithms, the consistency information can be statically
known or easily checked explicitly at runtime. The same is true for operating systems and network
interfaces but, perhaps, to a lesser extent. Likewise, for the caches themselves, software-managed
scratchpads could instead be used. However, the fundamental advantage of multiple levels of storage
technology with different speed-to-density ratios is unquestionable and can be demonstrated
analytically (Section 6.6.1). Also, automatic and on-demand loading of data into caches provides
parallelism and allows the system to adapt to dynamic program behaviour. These are the principal
advantages of hardware-managed caches (except for hard real-time systems). Arguably, the cost of
cache consistency for hardware-managed caches (unlike scratchpad memories) is a minimal further
overhead. Moreover, it is possible that software-managed scratchpads waste instruction bandwidth
by explicitly performing operations that could be inferred.

A scratchpad memory is a small region of primary storage that is closely coupled to a CPU core. Itis
normally implemented in SRAM and may be tens to hundreds of kilobytes in size. Its access time is low
(similar toa L1 or L2 data cache) but also predictable, since cache effects are minimised and there is
no DRAM delay. Two possible scratchpad configurations are shown in Figure 2.7. Non-determinate
cache effects are eliminated if the scratchpad is at the L1 level and small if at the L2 level. Use of
memory in scratchpads is managed in software and typically exploited only by hard real-time
singleton applications. A singleton application is one that is present at most once on a SoC, such as a
global manager for power, security or a specific I/O device.

38



Chapter 2 | Processors, Memory and IP Blocks

- Primary
o 18 5 storage
CPU o (L3 or
D$ 3 DRAM)
Scratchpad Scratchpad
SRAM SRAM

Figure 2.7 Two possible configurations for scratchpad memory

2.3.1 Simultaneous Multithreading

To increase the number of effective processor cores in a CMP, rather than adding further complete
cores, simultaneous multithreading can be used. This adds further retirement register files to an
existing core, which has a much lower area overhead than adding a full core with L1 caches. A thread
is defined by the presence of a program counter in each register file, but a full set of all architecturally
visible registers is needed. The set of reservation stations is shared over the threads within a
simultaneously multithreaded core. There are advantages and disadvantages. Apart from requiring
less silicon than a full new core, a new thread benefits from a statistical multiplexing gain

(Section 4.3.3) in the utilisation of reservation stations, since there is a higher chance that more of
them will be in use at once. A potential disadvantage is that the L1 caches are shared. This potentially
leads to greater thrashing (capacity evictions) unless the simultaneously multithreaded cores are
running closely coupled parts of the same program.

2.4 Cache Design

In computer architecture, a cache contains key-value pairs. The key is an address and the value is a
cache line of typically four or eight 32-bit words. The capacity of a cache is the number of key-value
pairs it can hold and is typically expressed using the total number of bytes it can store in the value
fields. A simple cache has two logical ports: (1) The front side gives fast and frequent access to the
cache user. Itis typically a CPU core or a faster cache. (2) The back side uses a wider and slower data
bus that connects to wherever the data are served from. The underlying implementation is typically
constructed from single-ported SRAM with virtual dual-porting (Figure 4.19). Having levels of caching
means that memory components that have different trade-offs between logic speed, storage density
and energy use can be combined efficiently (Section 6.6.1). There is always at least an order of
magnitude difference in bandwidth, in terms of bits per second, between the front and back sides. A
component with the same bandwidth on both sides that merely converts from a narrow bus to a wide
bus with a lower clock frequency is called a gearbox or serialiser.

The bandwidth saving from a cache arises for two reasons:

1. With temporal locality, an item recently looked at is likely to be looked at again.
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2. With spatial locality, items stored in nearby locations are likely to be accessed. A performance gain
and saving in complexity are achieved by fetching a cache line that is larger than a single byte or
word. The performance increases because adjacent data are prefetched. The complexity is reduced
because the data management overhead is amortised.

There are three principal organisation techniques for caches:

1. Afully associative cache allows any line to be stored anywhere in the cache. A parallel search of
the whole cache is used to determine whether an address is held, which tends to be too energy
expensive (except for MMU TLBs, Section 2.2.1).

2. Adirectly mapped cache has just one place where an address can be stored. That location is given
by a hash function on the address. The normal hash function, suitable when the cache size is a
power of two, is to ignore all higher-order address bits. A directly mapped cache has the advantage
that only one place needs to be searched to see whether data are held. Moreover, those data can be
returned to the customer in parallel with its validity being checked. The main disadvantage of a
directly mapped cache is the high degree of aliasing. Due to the birthday paradox, on average, too
much of the data that is concurrently needed is mapped on top of itself. This leads to much wasteful
thrashing. (The birthday paradox is the popular name for the fact that the probability of 30 people
all having different birthdays is surprisingly low).

3. The technique most commonly used is a set-associative cache. Each line is stored in a small set of
possible places (typically four or eight). When searching, only this small set needs to be checked,
which can be done in parallel with a small amount of hardware. However, the effect of the birthday
paradox is ameliorated: the chance that more than four lines will concurrently alias to the same set
is acceptably low. With eight, it is negligible. However, more ways are sometimes used in larger
caches (but this is to prevent the directly mapped bit field from becoming too large, such as bigger
than a virtual memory page).

If data are written to a cache but not yet synchronised with the next level of storage in the memory
hierarchy, then the cache line with the changes contains dirty data. In general, just a few bytes in the
whole cache line may be dirty. Freeing up a cache line so that it can be used for entirely different data
is known as eviction. When dirty data are evicted, the cache must save the modified data out of its
back side (to the next-level cache or primary store). This is the copyback policy for managing writes,
which is also known as a writeback. The alternative policy is write-through, in which all writes also
update subsequent levels as they happen. The disadvantage of a write-through is that bus bandwidth
is wasted in the common scenario of multiple, successive updates to the same variable. Moreover,
writes can stall the processor because they are slowed down to the rate supported by the next-level
cache by backpressure. To reduce the slowdown from backpressure, a write buffer is sometimes
used. A write buffer holds one or two lines under the fully associative policy. Dirty data are stored in
the write buffer and the dirty words are tagged. The buffer performs write coalescing of successive
writes to the same line. It can reduce back-side bandwidth use since only the dirty words need to be
written out to the next level. In this context, the width of a word is the width of the back-side data bus.
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A set-associative cache is efficient in terms of hit ratio for the degree of associativity and hence,
energy use. A disadvantage is that data can be returned only on the front side after the tag matching
is complete. In some designs, an extra memory, called the way cache, improves performance by
remembering which way was last successful in each directly mapped set and serving its data while the
tags are checked. A directly mapped cache can sometimes be improved with a victim store that holds
one or two additional lines under the fully associative policy. These are filled by lines evicted from the
main directly mapped array. This gives a small degree of full associativity.

A cache hit occurs when data are found in a cache. A cache needs to have a hit rate of above 80 per
cent to be worthwhile; typical hit rates in a data cache are often 95 per cent. They are even higher in
instruction caches at around 99 per cent, except for long straight-line code. A miss occurs when the
data are not found. There are four reasons for a miss:

1. A compulsory miss occurs if the data were never present in the cache. All data read must have an
initial reading. This is unavoidable, regardless of cache size.

2. A capacity miss arises when the data were present but have been evicted due to the need to reuse
the finite capacity.

3. A conflict miss arises due to cache mapping strategies. Fully associative caches do not suffer from
conflict misses. Instead, they occur because of enforced structures like direct mapping.

4. A sharing miss arises from cache-consistency protocols operating between two or more caches.
Under the copyback write policy, a cache line may become dirty in one cache and so copies in other
caches need to be removed. This is called a cache line invalidate. If a local user tries to read the
data, a sharing miss occurs.

If anew line needs to be loaded into an associative cache (fully associative or set-associative), the
system must decide where to store the new data using a replacement policy. The best replacement
policy is to evict the data that is not going to be used for the longest amount of time. In general, this
cannot be known, but certain characteristics can be dynamically learned with sufficient reliability to
be usefully exploited.

A common replacement policy is random replacement. No information is used to guide the decision.
Silicon testing is very difficult for logic with truly random behaviour, so it is avoided as much as
possible (Section 8.8.2). It is better to use a pseudorandom binary sequence (PRBS) generator. In
practice, a simple counter is sufficient.

The least-recently used (LRU) replacement policy has also been used. In a nominal implementation,
counters or timers exist for each cache line to keep track of when it was last used. It is assumed that
the line that was used the longest time ago will remain unused the furthest into the future and is, thus,
evicted.
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The complexity of LRU grows exponentially with the degree of associativity. A naive approach that
stores a timer in each associative way would have to compare many timers for each decision, perhaps
using a heap for efficiency. A heap is a tree with the most promising candidate at the root. It has a
logarithmic update cost. There is a factorial number of relative age orderings over the associative
ways, which can be used to create a more compact implementation of LRU. For instance, for a
four-way associative cache, there are 4! = 24 orderings, which can be enumerated in a 5-bit field. The
update function required when a way is used can be implemented in a compact logic function or a
partially populated ROM of 5 x 5 with a further two output bits to specify which way to use at each
step. For higher degrees of associativity, the factorial (exponential) complexity becomes infeasible
and similar logic functions are used to implement pseudo-LRU, which is cheaper but approximate.
However, such a noisy solution can have an advantage because certain regular access patterns, such
as a linear scan, which would thrash the cache under a perfect LRU, will retain some useful content.

Some designs implement the simple not recently used algorithm, which is also called the clock
algorithm when used in virtual memory paging. The clock algorithm uses a single bit per way, initially
clear, which is set when that way is used. Eviction selects a way using round-robin arbitration
(Section 4.2.1) from amongst those with clear bits. If setting a bit results in all bits being set in that
associative set, they are all cleared at that point. However, a true LRU policy is often useful for caches
if an access to the next level of store is expensive, such as for spinning disks or writes to solid-state
drives (SSDs).

Another policy variation is known as a write allocate, which can evict existing data. A value that is
written while its line is not in the cache causes an allocation within the cache. If it is clear the data are
not going to be served from the cache, write allocate is a waste of time. Such situations include erasing
blocks of memory for security or initialisation or for sending data to other parts of a shared-memory
system. Certain bus protocols, such as AXI (Section 3.1.5), enable the writer to indicate whether to
write allocate or not, for every write.
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Figure 2.8 Typical arrangement of virtual and physical mapping with L1, TLB and L2. Data are served from L1 or L2, but are unlikely to be served directly
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Figure 2.8 shows a particular arrangement of virtual and physical mapping with L1, L2 and TLB.
Numerous other arrangements can be used, but the advantage of having a virtually indexed L1 is that
the hits in it, which should be the vast majority of accesses, can be served without lookup delays in the
TLB. Additionally, the L2 tag RAMs are accessed in parallel with the TLB lookup, so inputs to the four
L2 comparators arrive at roughly the same time.

Implementing a four-way set-associative cache is fairly straightforward. An associative RAM
macrocell is not needed. Instead, four sets of XOR gates are synthesised from RTL using the ==
operator!

reg [31:0] dataO [0:32767], datal [0:32767], data2 [0:32767], data3 [0:32767];
reg [14:0] tag0 [0:32767], tagl [0:32767], tag2 [0:32767], tag3 [0:32767];

always @(posedge clk) begin
miss = 0;
if (tagO[addr[16:2]]==addr[31:17]) dout <= dataO[addr[16:2]];
else if (taglladdr[16:2]]1==addr[31:17]) dout <= datall[addr[16:2]];
else if (tag2[addr[16:2]]==addr[31:17]) dout <= data2[addr[16:2]];
else if (tag3[addr[16:2]]1==addr[31:17]) dout <= data3[addr[16:2]];
else miss = 1;

end

2.4.1 Snooping and Other Coherency Protocols
If multiple caches can store the same data, cache coherency is used to prevent copies becoming
unsynchronised. There are two main aspects to cache coherency:

1. Data consistency ensures that all observers see the same data in the same memory location.

2. Sequential consistency ensures that observers see the same ordering of updates in different
memory locations.

The standard data consistency protocol is MESI, named after the states modified, exclusive, shared
and invalid:

= Aninvalid (I) cache line is not in use.

® An exclusive (E) line holds data that are not in any other cache at the same level. The data may be in
caches at other levels.

= Ashared (S) line holds data that might also be present in other caches at the same level.

= A modified (M) line is the same as an exclusive line, but contains modified data. These dirty data
must be copied back at eviction.

Each cache line is in one of these states.
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System programmers need to be aware of several cache artefacts. Instruction caches are normally not
subject to consistency mechanisms, hence giving rise to a Harvard-like architecture. Self-modifying
code and loading new code are supported only with specific cache-flush instructions. The
programmer must include these instructions. Also, volatile memory areas, such as I/O device status
registers, must not be cached, since otherwise any polling-like operations (Section 2.7) will fail. This
can be overcome using a combination of uncacheable regions specifically denoted in the MMU
translation flags or additional attributes in the command field of a bus transaction, such as the AXI
uncacheable operation type (Section 3.1.5). Some ISAs contain special cache-bypassing load and store
instructions that a systems programmer must use. In general, all programmers really need to be aware
of how caches operate if they are to design efficient code and data structures.

Caches cooperating using the MESI protocol need to keep track of what is happening in the other
caches. For instance, a read miss will result in a back-side load, but the resulting state will be either
exclusive or shared depending on whether the data are already held in another cache. Likewise, a
store to a shared cache line needs to convert that cache line to modified but also evict the line from
those other caches that had the line in a shared state.

For small-scale systems, the principal communication technique for achieving cache consistency is
based around snooping of the back-side bus. In early systems, the back-side bus was a physical bus
where a common set of conductors connected to multiple caches. Owing to wiring capacitance, using
physical busses is no longer a good design point at the physical level (Section 1.1.4), but the term,
‘snooping’, and its related aspects persist. The important aspects of a logical bus are zero spatial ruse
of bandwidth (having at most one active transmitter) and being able to simultaneously broadcast to all
connected devices. Structures using snoop filters and directory protocols are used for larger systems.
These are presented presented in Section 3.1.6, after we have discussed cache-coherent interconnect.

Figure 2.9 shows one mapping of snooping cache consistency into reusable IP blocks. The illustrated
snoop control unit (SCU) has eight target sockets that can connect to up to four cores. A ninth socket
is available for connecting cache-consistent accelerators or DMA units. On the back side, it has one or
two initiator sockets to the next level of storage. lllustrated are two L2 caches that serve different
parts of the physical address space using an address partitioning system inside the SCU. The partition
must be set up by the operating system at boot time. Alternatively, with this IP block, the two
back-side ports can be connected in parallel to a shared next-level memory system to give twice as
much bandwidth but without partitioning. Hard partitioning suffers from a loss of performance due to
statistical multiplexing (Section 4.3.3) whereas a parallel connection requires arbitration if both ports
address the same primary or next-level region. Note, the TLM model for this SCU is discussed in
Section 5.4.2. The setup in Figure 2.9 uses the backchannel inside the TLM sockets on the caches and
the snoop controller to initiate invalidate operations on the local data cache of a core (Section 6.7.1).

The MESI protocol can be augmented with a fifth state, owned (O), for shared data that is dirty. The
cache is responsible for issuing a copyback before invalidating the line. As long as writes are

44



Chapter 2 | Processors, Memory and IP Blocks

Custom S ACP
>
accelerator port

= s P— -
PU_$ (] = Primary
0 |D$ [G—
42 b—s g,(? P storage
s P—o i 3 (bank 0)
CPUL—
1 [D$ [FH— %
2
B—3 S
cPulS 2
2 |DSH— & R ;
2 o Primary
S < — & P—0 storage
cpul s P 3 (bank 1)
3 |DS[—

Figure 2.9 An example system using a snoop control IP block from Arm (Cortex A9 family)

communicated between a group of consistent caches, they can exchange dirty data between
themselves, thereby avoiding writing out a dirty line to the next level of storage, only to read it in
again. Only one cache is permitted to hold the line in the owned state, and others must hold it in the
shared state. On the penultimate eviction, a line becomes modified again and the copyback to the next
level then occurs as usual on the final eviction from the group. This five-state protocol is called
MOESI. Figure 2.10 shows Arm’s equivalent to MOESI, as used in the AMBA ACE and CHI coherency
protocols. The ACE protocol extends the regular AXl interface with snoop channels to enable
communications between peer caches and maintain coherency.
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Figure 2.10 MOESI-like state diagram used in the Arm ACE and CHI protocols

If there are several levels of cache, it is sometimes necessary to ensure that a line cannot be evicted
from a cache unless it is missing from all (smaller and faster) caches on the front side. In other words,
each cached line is also present in all caches on the back side (which are typically larger and slower). A
cache level that maintains this policy is called an inclusive cache. Although this policy effectively
reduces the total number of different lines that can be stored in the cache system as a whole, it helps
with the scalability of coherency protocols (Section 3.1.6).
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2.5 Interrupts and the Interrupt Controller
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Figure 2.11 Three /O blocks connected to a CPU,
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Interrupt priorities and wiring can be hardwired at the SoC level or PCB level, or may be

programmable, completely or to some degree. Figure 2.11 shows the typical interrupt structure of a

Figure 2.12 Three I/O blocks with flexible interrupt distribution in a
multi-core system

SoC. The single core uses three 1/0O devices, each of which is a bus target for programmed 1/0 (PIO)

read and write transactions. They can also generate an interrupt for the CPU. An interrupt controller
can be as simple as a three-input OR gate or it could be programmable, as discussed here.

With only a single interrupt wire to the processor, all interrupt sources share it and the processor

must poll each interrupt to find the device that needs attention. An enhancement is to use a vectored
interrupt that makes the processor branch to a device-specific location. However, there is very little
difference in execution cost between having hardware and software handler tables, since an interrupt
controller contains a unary-to-binary priority encoder that can be interpreted by interrupt software
or hardware. A more important distinction is that interrupts can also be associated with priorities, so
that interrupts with a level higher than currently being run will pre-empt.

At the processor core level, a higher-priority interrupt is one that can pre-empt a lower one. Processor

cores typically support more than one level of interrupt priority. For instance, the Motorola 68000
had seven. Arm cores typically had only two levels, called IRQ and FIQ, with FIQ being higher. The
number of effective levels of priority can be augmented outside the core in the interrupt controller.

Generally, many more devices can raise an interrupt than the number of interrupt priority levels
supported by the cores. Hence, a degree of sharing of levels is needed. Those that share a processor

priority level can have their own relative priority implemented inside the interrupt controller using a

standard priority encoder, as just mentioned. Alternatively, a round-robin arbitration policy can be
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supported inside the controller. This requires keeping a state for which source was last served
(Section 4.2.1).

With only a single core, all interrupts must be routed to that core. The only remaining degree of
freedom is then deciding what priority to allocate to each interrupt. As mentioned, this could be a pair
of priorities: the core priority and the priority amongst those share a core priority.

With multiple cores, there are many more possibilities. The main new policy decision is whether
individual cores should be strongly associated with a given interrupt source or whether to use
dynamic allocation of cores to interrupts. Figure 2.12 shows the most generic setup. This is embodied
in products such as Arm’s generic interrupt controller (GIC). Interrupts can be routed statically to a
core or dynamically dispatched based on a core being available that is not already interrupted or that
is running a lower-priority interrupt. These policies are controlled by the boot-up core, which sets the
values in tens of configuration registers (Section 9.1) [5].

Two nets, an interrupt request and an acknowledge run bidirectionally between the core and the
controller. Although the core may not implement interrupt priorities, the controller can implement
pre-emption by having the core re-enable interrupts as soon as it has acknowledged an interrupt from
the controller and then relying on the controller to interrupt the core again only if there is
higher-priority work.

2.5.1 Interrupt Structure Within a Device

Processor
wdata »D Q Interrupt
wdata » o Enable or Mask
e
—+ |
hwen —— Control
Register
hren
A B ———
interrupt 4—( — t\__\l
Request Ack
. Device Local logic
Other interrupt

sources

Figure 2.13 Interrupt generation: general structure within a device and at system level

When discussing 1/O devices, the term host refers to the CPU or code that is looking after the device.
When a device is newly reset, it has not been configured. It should not generate interrupts until after
it has been set up by its device driver code running on the host. Moreover, interrupts need to be
turned off during operation if the device goes idle (especially transmit-ready interrupts, Section 2.7.1).
Although on/off control is possible inside the CPU and inside most interrupt controllers, a device
typically has a master interrupt enable control register bit that can be set and cleared by P1O by the
controlling processor. A P1O register that holds on/off control for an interrupt is called an interrupt
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mask. As well as this master flag, a device commonly has further interrupt masks for specific local
causes of interrupts. Its output is just ANDed with the local interrupt source. This is shown in
Figure 2.13. This isillustrated for the UART device driver, which turns off transmit interrupts when
there is nothing to send (Section 2.7.1).

P10 uses the write-enable (hwen) signal to protect the transfer of data from the main data bus into the
control register. Ahren signal is used for reading back a stored value.

The widely used pattern of interrupt programming is demonstrated for the UART device driver code
in Section 2.7.1:

= The receiving side keeps the interrupt always enabled. The device then interrupts when received
data areready.

" The sending side enables the interrupt only when the driver’s software output queue is not empty.
The device then interrupts when the hardware output queue is ready, but not if there is nothing to
send.

These two general patterns arise with all I/O devices. Moreover, if DMA is used (Section 2.7.5), the
same principle still applies, but the memory pools used for DMA now logically belong to the device
and interrupts occur when these pools need a service from the host.

2.6 Memory Technology

More than half the silicon area of nearly every SoC consists of memory, mainly SRAM (Table 2.1).
Memory is always a bus target and, with its details abstracted, can be thought of as quite simple.
However, a memory subsystem may embody error detection and correction, in which case it usefully
needs to have a fault indication output for uncorrectable errors. It may also have a built-in self-test
(BIST) (Section 4.7.6), in which case it will have test modes and control inputs. Certain
error-correcting memory requires that scrub commands are executed periodically (Section 4.7.6).
DRAM needs to be refreshed and ideally put into a low power state if about to become idle. Flash
needs wear levelling and bulk erase control, so memory can have a significant amount of complexity.

Table 2.1 Principal characteristics of memory technologies currently used for booting, caches, primary storage and secondary storage

Memory Volatile Main applications Implementation

ROM No Booting, coefficients Content set by a tapeout mask
SRAM Yes Caches, scratchpads, FIFO buffers One bistable (invertor pair) per bit
DRAM Yes Primary storage Capacitor charge storage
EA-ROM No Secondary storage Floating-gate FET charge storage
Memristive No Next generation Electrically induced resistance changes

Figure 2.14 illustrates the relative dominance of memory arrays in area terms. For a high performance
processor [6], the L1 and L2 cache memory arrays were placed on a separate piece of silicon from all of
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the other logic. Both dies were 10 x 10 mm using 7 nm FinFET transistors, and the two dies were
stacked (Section 8.9.1). The instruction and data L1 caches are each 64 KB, set associative. The L2
cache size is 1 MB using two banks. The two dies were designed in close conjunction, as required for
inter-chip bonding using the third dimension, and to avoid vertically aligned hot spots. The memory
array area has dominated the overall chip size, since that die is fully filled, whereas the coloured logic
layer can be seen to not need all of its die. Hence more than 50% of the silicon area is memory.
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Figure 2.14 Floorplan visualisation of a 3D implementation of the Arm Neoverse N1 design using two chips, vertically stacked. The cache memories are
placed on the lower piece of silicon, shown in monochrome, whereas the logic for the ALUs, register files and everything else is shown in colour on top. The
1MB L2 label is the L2 logic and not L2 memory arrays

2.6.1 Logical and Physical Layouts

Most typical applications of ROM and RAM require both the number of address bits and the number
of data bits to be in the tens. The widest data words typically encountered might be 4 x 8 x 9 = 288,
corresponding to four 64-bit words with error correction (Section 4.7.6). However, the number of bits
stored is exponential in the number of address bits and linear in the number of data bits. So even with
awide word, this leads to a very long and skinny logical arrangement. For instance, a 16k-word RAM
with 16 address bits and 256 data bits is said to have an arrangement of 65536 x 256. Designing a
memory macro of this shape will be impractical, since its performance would be very poor due to the
high capacitance of the long nets. A low aspect ratio (square-like) array of bit cells is desirable for a
balanced floor plan (Section 8.6) and leads to lower power operation (Section 4.6).

The total number of bits can factorised in a close-to-square way using Napier’s rule:

216 « 28 — 224 — 212 % 212
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We would, therefore, use a square array with 4096 bits on a side, or perhaps 2048 rows of 8192
columns, or vice versa, depending on the details of the target technology, which may marginally prefer
rows to columns. For arrays that require a number of rows or columns beyond what can be supported
with appropriate noise margins, then multiple smaller arrays are used. For example, multiple arrays
are illustrated in the DRAM micrograph of Figure 2.21.
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Figure 2.15 Low-aspect-ratio RAM array showing the shared peripheral circuitry, which includes the word-line decoder, sense amplifiers, tri-state buffers
and I/0 multiplexor. Externally it offers 2N words of M bits where N = log, (R) +log, (C). Internally it uses R rows each with (M x C)-bit cells

For a single-array design, the general setup is illustrated in Figure 2.15. The N address bits are
presented externally in binary format and address 2N locations of M bits. N — log, (C) bits of the
address field are fed to the binary-to-unary row decoder, which raises one active row line. This
horizontal net is also called a word-line net as, on assertion, it selects the appropriate bit array word,
which is one row. The values stored in all cells of the word are simultaneously read out to the vertical
nets, which are called bit lines. The remaining address bits are used to select which M-bit word to
update or to deliver externally. The write-enable input controls the operation on the word. For a read,
the appropriate bits are delivered on the data in/out nets, whereas for a write, the data received on
these nets are forwarded by M enabled tri-state buffers to the bit cell (Figure 2.17).

To reduce noise and to facilitate writing in RAM, the bit lines are present in true and negated form, so
there are twice as many of them as bit cells in the row. ROM often uses a single bit line per bit.

Memory access timing is composed of the address decoder delay, the word-line delay and the bit-line
delay. With technology scaling, word-line and bit-line parasitic resistance has increased manifold and
now these components dominate the memory access time.
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Non-volatile memory retains its value when the power is removed. This is essential for secondary
storage. Classically, the main forms of secondary storage have been tapes and disks. For booting, it is
critical to have a non-volatile store in the boot ROM (Section 9.1). Non-volatile stores were used as
primary storage in ferrite core memories of the 1960s, and there has been some resurgence with the
use of flash and Optane (©Intel), but most current non-volatile technologies cannot replace SRAM or
DRAM for primary data storage due to limitations in access times and write endurance.

2.6.2 Mask-programmed ROM
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Figure 2.16 Mask-programmed NMOS ROM structure with a capacity of 2N locations, each holding an M-bit word

Read-only memory (ROM) is non-volatile and has restrictions on how it can be written. The most
simple bit cell of all memory types is found in mask-programmed ROM, as illustrated in Figure 2.16. A
zero is represented by the presence of a transistor in the bit-cell array and a one by the absence of a
transistor. The contents (stored data) must be known at tapeout (Section 8.7.7), which is when the
photolithographic masks are made for production. They cannot be changed post-fabrication. In a SoC
design, such ROM is used for bootstrap code, secret keys (Section 9.1.1) and coefficient tables in
certain accelerators.

An NMOS structure is shown in the figure. It uses a weak pull-up transistor for each bit line. An
alternative is dynamic logic, which is also commonly used. Dynamic logic uses the two phases of a
clock. The bit lines are precharged, usually to VDD on one phase, and then allowed to float. Using the
high address bits, the row address is decoded and an entire word is selected by the assertion of the
corresponding word line on the other phase of the clock. Depending upon the value stored in each
cell, bit lines are either pulled low or not as the charge on the line discharges through the bit cell. The
externally required bit or word of M bits is selected for output using the remaining (low) bits of the
address field.
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2.6.3 Static Random Access Memory

The size and number of ports of static RAM (SRAM) vary. Single-ported SRAM is the most important
and most simple resource. It can be connected to a bus as an addressable scratchpad target. It is also
used inside caches for tags and data.
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Figure 2.17 Transistor-level view of a standard six-transistor (6T) SRAM cell. M1, M2, M3 and M4 are used for storage. M5 and Mé are used to access the
cell for read and write operations

An SRAM cell is shown in Figure 2.17. Data are stored in a pair of cross-coupled invertors (M1 to M4)
that form a bistable. Two access transistors (M5 and Mé) are used for read and write operations on
the cell. The transfer function of the cross-coupled invertors has three equilibrium points, two of
which are stable (Section 3.7.2), giving a standard bistable.

A simple bistable consumes a few per cent of the area of a full edge-triggered flip-flop. The word
‘static’ in SRAM denotes that data are retained in the memory for as long as its powered on (in
contrast to DRAM, Section 2.6.6). The ‘random access’ in SRAM denotes that the ordering in which
data are stored does not affect the access time. The ‘RAM’ in DRAM means the same thing, but, as we
explain, access times vary with DRAM depending on what was last accessed. Shift registers, FIFO
buffers and, historically, drum drives are examples of non-random access memory. If the memory
system is complex, the different RAM devices will be at different distances from the point of access,
resulting in an architecture with non-uniform memory access (NUMA).

The read operation for SRAM is the same as described for ROM. The only caveat is that the
capacitance of the bit lines must be sufficiently small to avoid upsetting the tiny RAM cell when
connected to the bit line. This is the read-disturb problem. It is preferable to precharge all bit lines to
a minimally disruptive voltage in advance of asserting the row line. Certainly, they should be
precharged to the same voltage to avoid a bias that will tend to flip the RAM cell content. SRAM and
DRAM both require a precharge time between operations. Although this does not affect the read
latency, it does extend the total read cycle time.
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For the bit cells that are to be updated by a write operation, BL and BL are driven to VDD and GND,
respectively, or vice versa, depending upon the data to be written. Again, the row address is decoded,
and an entire word is selected by asserting the corresponding WL. If the data to be written are
different from what is already stored in the cell, the BL and BL pair overpower the feedback of the
cross-coupled invertor to flip the cell to its new value.

Due to RAM fabrication overheads, RAM below a few hundred bits should typically be implemented
as register files made of flip-flops. However, larger RAM has better density and power consumption
than arrays of flip-flops.

SRAM Noise Margins

The noise margin for a net is the voltage offset it can sustain before correct operation of the circuit is
compromised. The DC noise margin is the offset before a zero is interpreted as a one or vice versa.
The AC noise margin is the offset before the circuit moves from a gain less than unity to greater than
unity. If acircuit is operating above its AC noise margin, random noise is amplified instead of being
attenuated and the fundamental digitalness of the systemis lost. The noise voltage offsets can
equivalently be in the supply rails or the signal nets.

For a manufacturing process node (Section 8.2.1), the wiring capacitance for a given length is
predetermined. The only freedom the RAM designer has is setting the size of the transistors. These
considerations determine the maximum column length possible. An SRAM cell has a ratioed logic
design: the transistors must be sized carefully for correct operation. It is also very important to
consider the spatial variation, as typically a memory array has millions of cells and each bit cell must
work correctly. The variations become larger with process and voltage scaling (Section 8.4.4). This
degrades the SRAM noise margins, which is the key challenge in SRAM design for advanced
semiconductor process nodes.

2.6.4 Synchronous Static RAM

Although RAM bit cells do not require a clock, it is common to wrap up the main bit array within a
synchronous wrapper, resulting in synchronous static RAM (SSRAM), as shown in Figure 2.18.
SSRAM has at least one clock cycle of read latency, which arises by putting a broadside register on the
data output. A second cycle of latency arises if there is an input register as well in the binary-to-unary
row decoder. Such memory may be denoted as SSRAM2. The design must be aware of the read
pipeline delay. This was illustrated on the front side of the two caches in the five-stage RISC in

Figure 2.3. For writes, there is no pipeline effect, as the write-enable, write-data and write-address
are all presented in the same clock cycle.

The RAM illustrated has a read latency of one clock cycle. Note than when a write occurs, the old
value at the addressed location is still read out, which is commonly a useful feature. The en input
signal is not strictly needed since the RAM could deliver read data on all cycles. However, not having it
would waste power.
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if (en) rdata <= darray([addr];
Word width = nD if (engwen) darray[addr] <= wdata;

Capacity = nD * (2 A nA) bits. end
endmodule

Figure 2.18 SSRAM with a single port, showing the logic symbol (left) and internal RTL model (right)

2.6.5 Dual-ported Static RAM

Many memories need to be accessed from many different places within the SoC. This is possible using
multiplexers in the SoC interconnect (Chapter 3), but having two physical sets of wiring to the bit cells
is also quite often used for SRAM. A bit cell for SRAM with two complete sets of row and column logic
is shown in Figure 2.19. One version of such a dual-ported SRAM contains eight transistors instead of
the usual six. The corresponding logic symbol is shown in Figure 2.20. This shows a single clock input,
but having two clock inputs, one per port, is also common and useful for sharing data between clock
domains.
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Figure 2.19 8T SRAM cell with true dual-porting Figure 2.20 Dual-ported SSRAM logic symbol

An 8T dual-ported SRAM cell is not as dense as a 6T SRAM. Furthermore, the internal node of the cell
has greater capacitive loading due to its connections to multiple access transistors, which leads to
greater latency and power use. Another design implication is that such a memory needs collision
circuitry to avoid multiple writes of different data to the same cell. A collision detector will tacitly give
priority to one port, but in principle, the output from a collision detector could be made available for
system-level use.

2.6.6 Dynamic RAM

The word ‘dynamic’ in dynamic RAM (DRAM) denotes that it uses charge as the mechanism of storage.
Charge is used in both DRAM and flash memory, but in DRAM there is leakage and this charge needs
to be refreshed at a few hundred hertz or else the DRAM cell will lose its content. Figure 2.21 shows a
micrograph of a DRAM chip. Externally, this device is accessed with row and column addresses of ten
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Figure 2.21 Micrograph of a simple DRAM chip circa 1994. This is a Micron Technology MT4C1024 device with organisation 1024x1024x1 (source:
ZeptoBars 2012. Reproduced under the terms of the Creative Commons Attribution Licence, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0>)

bits each, so logically it is organised as a single array of 1024 columns of 1024 bits. But the micrograph

shows the physical layout uses sixteen sub-arrays. The physical layout is selected for optimum noise
margin reasons (Section 2.6.3). Also visible are the 24 orange-looking bond pads, 12 on each side.

Figure 2.22-left shows the external connections where the 24 bond pads are connected to 20 external
pins. The difference arises since several bond pads may be connected in parallel to the Vss and Vpp

supply pins for reduced inductance and resistance.

As shown on the right of Figure 2.22 each bit cell consists of a capacitor, which stores the state of one
bit, and an access transistor. For maximum density, these are normally vertically organised with the
transistor on top of the capacitor. The capacitor may actually be a reverse-biased diode with a large
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Figure 2.22 Left: pinout for a typical asynchronous DRAM, such as the MT4C1024 pictured above, that is controlled by the RAS and CAS signals instead of a
having a clock input. Right: basic internal structure schematic. This device only has a single bank so there are no bank address inputs
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junction area or it may be a stacked arrangement with interleaved conducting fingers. The capacitor
can be in either a charged or discharged state, which denotes a logical 1 or O, respectively.

DRAM is slower but much more compact than a six-transistor SRAM cell. DRAM is principally used as
the primary storage (main memory) of SoC systems. Manufacturing capacitive structures in silicon
that are compact yet highly capacitive is difficult and needs a specialised process. However, this
process is not good for most other forms of logic and this is one reason why DRAM is normally on a
separate piece of silicon, die-stacked or nearby on the printed-circuit board (PCB). Another reason is
the area versus yield trade-off (Section 8.11.1). Moreover, DRAM is a commodity device rather than
application-specific (Figure 8.31).

DRAM: Activate, Read and Write

The DRAM read cycle is based on the row-activate operation, which is the lowest-level DRAM
operation, with all other significant operations being built on top. In a row-activate operation, the row
address is decoded from binary to unary and the corresponding word line then becomes asserted. The
bit lines must first have been precharged, usually to Vpp, and then allowed to float. The bit-line
capacitance will generally be larger than that of a bit cell capacitor, but as the word line is asserted,
the bit line shares charge with the cell capacitor and the bit line will change in voltage by a sufficient
amount to be reliably detected. If arow has its row line asserted, the row is said to be open and that
row is called the open page.

Unlike SRAM, a row-activate operation is destructive: the charge redistribution causes a large change
in the original value of the charge stored on the capacitor so that a follow-on read will fail. Hence, any
read must be followed by a writeback when the row is closed (deactivated). To perform the writeback,
the bit line is driven to the value of the data to be written. This value is then transferred onto the
capacitor of the cell through the access transistor before the word line is de-asserted.

As with SRAM, the values detected on bit lines of interest are selected by the remaining address bits
(called the column address) and read out from the chip. It is common for external logic to successively
supply multiple column addresses from the active row. The system-level hardware and software are
optimised to make use of the random access available within a row once it is activated.

A refresh operation is a row activation without any column address being supplied. The row closure
writes the data back, ameliorating the effect of leakage. Every row must have been activated and
closed, within a prescribed period of a few milliseconds. A counter is provided on the DRAM chip that
selects which row will next be refreshed. If there are 1024 rows in the bit cell array, then a refresh
operation is needed every few microseconds on average. This presents a low overhead considering
that hundreds of activations per microsecond are typically supported (see the timing figures in the
next section). Often the refresh can be entirely hidden with a line in one bit-cell array being refreshed
while another bit-cell array is being used for a read or write.

A DRAM write operation is a further variation of the row-activate operation. The values written back
are different from those read out in the places where write operations have been performed.
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DRAM: Banks, Ranks and Channels

Table 2.2 shows the data organisation in a typical DRAM channel that uses four dual in-line memory
modules (DIMMs) each with 16 DRAM chips. The chips are shown in Figure 2.24. The address is
provided via 3 bank bits and 14 address bits. Only 12 of those are used when the row address is being
provided. (Note, for clarity, Figure 2.24 shows only two bank bits.) A DRAM channel is the set of nets
between a DRAM controller. It raises a structural hazard (Section 6.3) in terms of simultaneous access
toeachrank. Arankis a set of DRAM chips with their data, address and enable signals in common.
This is also true for a DIMM, but a rank enables a physical DIMM to host some number (two or four) of
logical DIMMs on the same PCB.

Table 2.2 DRAM address terminology and hierarchy with typical sizes

Quantity Aggregate capacity  Description

1 channel 16 GB A physical bus: 64 data bits, 3 bank bits and 14 address bits
4 DIMMs 16 GB Multiple DIMMs are connected on the PCB to one channel
1rank 4GB A number of logical DIMMs within a physical DIMM

16 chips 16 x0.5=4GB This DIMM uses 16 4-bit chips making a 64-bit word
Lanes/chip 4 bitlanes=1GB Each chip serves a word 4 bits wide

8 banks 214+12+8 — 0 5Ghit  Each bank has its own bit-cell arrays (simultaneously open)
212 rows 64 Mbit A page or row is one row of bit cells in an array

(Burst) 8 words = 64 bytes The unit of transfer over the channel

214 columns 16 kbit The data read/write line to a bit cell

Figure 2.23 4-Gbyte DRAM dual in-line memory module (DIMM) for a laptop computer. Eight chips are mounted on a small PCB, four on each side. A label
on the back says ‘1600 11-11-11". More detailed information, including the supply voltage, is stored electronically in a small serial presence detect (SPD)
ROM in the centre of the DIMM

A modern DRAM chip contains multiple bit-cell arrays, not only to provide multi-bit words and
guarantee noise margins, but also to offer DRAM banks. Banks are very useful. If pages are in
different banks, a DRAM chip can have multiple pages open at once. To ensure performance, a good
closure policy must be implemented in the DRAM controller. It can be premature to close a page
immediately after a read or write operation because the next read or write may be to the same page
and the page will have to be reopened. However, if the next operation for a bank is on a different page,
leaving the bank open on the last page will delay access since the open page will have to be closed
before the required page can be opened. Moreover, a writeback needs to be made and the bit lines
need to be precharged between any close and the next open on a bank. Getting the controller to delay
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awrite does not affect system performance and can even increase it due to write coalescing.
However, the customer of a delayed read will be held up by the increased access time latency. Hence,
although DRAM is called random access memory, it has very non-uniform access times depending on
what state a requested pageisin.
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Figure 2.24 Internal block diagram of a 4-bit-wide DRAM device. There are four banks, although eight are normal. (The data strobe (DS) signal is omitted for
clarity)

DRAMs for use in PCs are mounted on single-in-line memory modules (SIMMs) or DIMMs. However,
for embedded applications, they are typically just soldered onto the main PCB. Normally, one DRAM
chip (or pair of chips to make D = 32) is shared over many subsystems in, say, a mobile phone. SoC
DRAM compatibility might be a generation behind workstation DRAM. For example, a SoC may use
DDR3 instead of DDRA4. Also, the most recent SoCs embed some DRAM on the main die or
flip-chip/die-stack the DRAM directly on top of the SoC die in the same package as a multi-chip
module (MCM) (Section 8.9.1). Table 2.3 gives the pin connections for a typical DIMM.

DRAM Performance
The design and provisioning of a DRAM subsystem is one of the most critical aspects of a SoC. More
than one DRAM channel is used in high-performance desktop workstations and supercomputers, but
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Table 2.3 Typical DIMM connections

Clock+ Clock (400 MHz) DS[7:0] Data strobes
RAS- Row address strobe DM[7:0] Data masks
CAsS- Column address strobe cs- Chip select

WE- Write enable MAddr [15:0] Address input
DQ[63:0] Data in/out BK[2:0] Bank select
Reset Power-on reset spd[3:0] Serial presence detect
wQ[7:0] Write-lane qualifiers

for everyday laptops, cellphones and embedded systems, a single DRAM channel is used. Also, a single
rank is used, whether in DIMM form or on the PCB or MCM. The mid-range laptop DRAM in

Figure 2.23 was specified as 1600 11-11-11. This denotes the effective clock frequency in MHz and
the number of clock cycles for row addressing, column addressing and precharge. This is a double
data rate (DDR) DRAM so the physical clock net runs at half the quoted clock frequency and is,
therefore, 800 MHz, since both clock edges are used to transfer data.

The maximum throughput of a DRAM is often quoted in MT/s or million transfers per second. For a
low-performance memory system, the data bus width and clock frequency are the main performance
parameters. The bottom end is 16 bits at around 200 MHz. Using both edges of the clock, we can
achieve 400 MT/s but due to the narrow bus, this is only 0.8 gigabytes per second (GB/s). This is
suitable for an inexpensive smartphone. For high-performance memory systems, a 2.166-GHz clock
might be used, giving 4.3 GT/s on a 64-bit bus, making 34 GB/s. This is suitable for a server cloud
blade. For further performance, several such channels are connected to one CMP (Section 2.3).

The maximum transfer rate of a data bus cannot be sustained except when reading all the data from a
row before activating the next row. The provision of the column address within the row is overlapped
with the actual data access, but if there are 11 clock cycles for the column address operation, the data
burst size needs to be sufficiently large to exploit the overlap. Reading an entire row is infrequent,
since a row stores more than a cache line. The maximum throughput is degraded by the need to close
rows and open other rows.

With higher clock rates, the row and column clock counts also tend to increase, so become
comparatively longer while staying similar in real terms. A high-performance DRAM may be specified
as 19-21-21. In the worst case, if this DRAM is currently open on the wrong row, 61 clock cycles are
then needed to change to the new location. Roughly the same number of clock cycles again will be
used in pipeline stages through the various memory hierarchy levels of the controller.

There is a further description of DRAM configuration and controllers in Section 4.5.0.

2.6.7 Electrically Alterable ROMs

An electrically alterable ROM (EA-ROM) is non-volatile, but its contents can be changed by applying
electric fields or currents. One of the earliest forms used metallic fusible links that can be melted with
a heavy current. These still have limited use during post-fabrication testing for speed binning
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(Section 8.8.4) and redundancy zapping (Section 8.8.4). Most forms today use charge stored on a
floating gate.
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Figure 2.25 NOR ROM block diagram (left) with capacity 2(R+C) pits and alternative NAND ROM array detail (right). For a ROM more than 1 bit wide, the
Dout connection is a bus of width M and the low address bus width is reduced by logy (M) bits

Figure 2.25 shows the two basic configurations of ROM arrays. Only the transistors in one polarity of
the bit cell programming are present. Both forms use a weak NMOS pull-up on the bit lines, which acts
like a resistor, but a dynamic precharge to Vpp can also serve and trade off static and dynamic power
(Section 4.6.1).

A NOR ROM resembles a NOR logic gate since the NMOS transistors are connected in parallel to the
output bit line. A logic zero is produced if a word line is asserted (taken high) and a transistor is
actively preset to pull down the bit line. The absence of a transistor means the bit line will remain
undisturbed at 1.

NAND ROM operation uses negated word lines, which are normally high. The row binary-to-unary
decoder makes one of them low. Since, initially all word lines are high, the default output value of bit
lines is 0. The presence of an active NMOS transistor in the bit cell turns off the NMOS stack, enabling
the bit line to go high. If there is no cell transistor, the top and bottom of the cell are effectively joined
by a wire, although this is a permanently on transistor in a NAND EA-ROM.

NOR ROMs are fast, as the pull-down stack has only a single NMOS compared to the series of NMOS
devices in a NAND ROM. On the other hand, a NAND cell is more compact as it does not require a
ground wire or the associated contacts for connecting to the bit line and ground. The whole stack of
transistor channels can be made as a single, contiguous channel polygon in the fabrication masks.
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2.6.8 Floating-gate EA-ROMs and Flash

Most EA-ROM technology uses a floating-gate transistor, which is like a regular MOS transistor
except that it has an extra layer in its gate structure. Instead of one polysilicon gate, it has two
polysilicon gates, one on top of the other. This is shown as part of Figure 2.27. The upper gate
connects to the word line or ground, while the lower is completely floating, since it is surrounded by
gate oxide on all sides. In electronics, a floating conductor is disconnected from anything that alters
its electrical potential. The key ideais that the threshold of a floating-gate transistor is altered by the
static charge stored on the floating gate. By adjusting this charge, the transistor can be changed from
being always on, always off or behaving normally. Moreover, by applying a high voltage at the
connected gate, charge is moved onto the floating gate through hot carrier injection (Section 8.12.15)
or electron tunnelling. The trapped charge on the floating gate can be retained for decades, thereby
making the bit cells non-volatile.

Two directions of charge movement are needed to change the value stored in a floating-gate
transistor, depending on its current state. Different mechanisms are used for the two directions of
transfer, with one direction generally taking orders of magnitude longer than the other. The fast
direction is commonly not any slower than a read operation.

The first generation of floating-gate devices were for erasable programmable read-only memory
(EPROM). The erase procedure for these devices required them to be placed inside a sealed box with
a high-intensity ultraviolet light source. As shown in Figure 2.26, the chip package had a glass window
inthe top to let the light in. Such a package was expensive. For production runs where reprogramming
was never expected, the same chip was also available in opaque plastic packages. The first EPROM
chips used by the author required three supply rails for normal operation (+5, -5 and +12 V) and a
fourth supply (+27 V) during programming. Today’s devices generate all the required voltages on-chip
from a single external supply of 3.3 V.

Figure 2.26 EPROM device from the 1980s. The silicon die is visible through the top window

In contrast to the single-transistor bit cell shown in Figure 2.25, Figure 2.27 shows a two-transistor bit
cell. The design is tolerant to large margins in the lower transistor since it just has to be always on or
always off. Single-transistor designs are widely used; the word line is connected to the floating-gate
transistor’s non-floating gate. A one-transistor cell requires more careful erasing since the floating
charge must be brought back into the range where the transistor operates normally. NOR and NAND
structures, as illustrated for the EA-ROM in Figure 2.25, are commonly used with floating-gate ROMs.
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Figure 2.27 Schematic of a possible bit cell for EPROM and EEPROM. There is a kink on the top of the extra gate of this floating-gate transistor to denote
that tunnelling is possible

A major step forward was electrically erasable programmable read-only memory (EEPROM). In such
devices, bits can be programmed in not just one, but both directions, by electron tunnelling and/or
carrier injection. The predominant EA-ROM used today is flash memory. Programming is performed
on a per-bit basis and is fast, but erasing is done on a large block basis, with the silicon die typically
having eight erase regions. Erasing a region takes milliseconds. These devices use internal timers and
measurement mechanisms to apply just the right amount of reverse charge. Erasing does not
eliminate all the stored charge, so eventually such memory will fail. It is guaranteed for some finite
number of erase cycles per block, such as one million.

Solid-state drives (SSD)s with EEPROM are replacing spinning magnetic disks. Flash USB memory
sticks use the same technology. Although these devices give the impression that writing either
polarity of data is equally easy, internally they include additional, unadvertised storage, some of which
is kept erased and dynamically mapped into the memory map as appropriate. They also maintain
counters for wear levelling to ensure that, whatever the application’s use patterns, there is a balanced
pattern of erase operations over the physical erase regions.

2.6.9 Emerging Memory Technologies

Today’s memory technologies are having trouble keeping up with ever-increasing demands on density,
access time and energy use. Although performance continues to rise by using ever smaller
geometries, noise margins are being eroded. SRAM faces challenges from increased process variation
and the degradation of noise margins. Shrinking a DRAM capacitor means that the stored charge is
more susceptible to noise and disturbance from nearby rows and columns. A lower capacitor charge
also means less charge is shared and the voltage swing is reduced, which is a problem for reliable
sensing. Also, the contact resistance between the cell capacitor and the access transistor is higher.
The resistivity of a smaller cell transistor impacts DRAM speed. Moreover, flash is reaching the
fundamental limits for device size. Thus, accidentally losing even a few electrons from a floating gate
canresult in data retention issues. Besides, write endurance has become worse as the electric field
stress during programming is higher for smaller geometries.
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The second major problem is standby power. An SRAM cell is a four-transistor bistable that consumes
static leakage power. These cells must always be powered on to retain their state, even if they are idle.
One mitigation is to drop the supply voltage if the bit array has not been accessed recently. This
retains data but the cell is no longer powerful enough to be read reliably. If the cell transistor in
DRAM is made smaller, its leakage grows. Combined with the smaller cell capacitance due to
shrinking, the reliable retention time is reduced. As a result, refreshes must be performed more
frequently and energy use due to refreshing contributes more to the system power budget.

There is commercial interest in new memory technologies that sit between DRAM and SRAM in terms
of density and access time. Three-dimensional, non-volatile memory is one possibility. Intel and
Micron released one form of this, branded Optane. It uses memristive technology, in which arrays of
resistors made from special compounds are measured with a small electrical current and modified
with a higher current. Such memories are non-volatile and have zero standby power. The number of
write cycles and the speed of writing are both significantly improved with respect to floating-gate
EA-ROM. Motherboards with slots for such memories became available, but many of the products
were cancelled in early 2021 [7]. Moreover, the long-established distinction between primary and
secondary storage is being challenged by such technologies, so fully exploiting them will be highly
disruptive.

2.6.10 Processor Speed versus Memory Speed

The speed of processors has doubled every two years, whether by increasing the clock frequency or
by using a multi-core design. Memory density has likewise roughly doubled every two years. Both
trends have lead to increasingly powerful and affordable computers. However, the memory access
latency decreases at only half this rate.

This ever-expanding gap between main memory and CPU performance is known as the memory wall,
asitis abarrier to further progress. Figure 2.28 illustrates the memory wall issue. It plots the increase
in single-threaded performance as cache sizes are increased above a baseline value. Each data point
represents the average performance of SPEC-Integer-2006, a well established benchmarking suite
[8]. Increasing the number of cores does not benefit workloads with few options for parallelism
(Section 4.2), so increasing the size and complexity of caches are the main solutions. This essentially
brings the computation closer to the data that are being operated on, which is a basic form of
near-data processing [9].

Babbage’s two main computer architectures differed in that the ALU associated with each storage
location in his Difference Engine was replaced with a centralised resource in his Analytical Engine.
The motivation was cost. Today, it would be inexpensive to distribute tens of thousands of ALUs
throughout a memory device, so a return towards Babbage’s original design is potentially feasible.
However, this results in a radically new computing architecture. DRAM and high-performance logic
would have to be mixed by the same silicon process, which raises new fabrication challenges
(Section 6.1). It is possible such approaches will gain commercial traction within a decade, but such
ideas are currently just academic.
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Figure 2.28 Typical increase in benchmark performance in response to L3 cache size enlargement for L2=64 KB (blue), L2=128 KB (yellow) and L2=256 KB
(red)

2.7 SoC /O Blocks

In this section, we review some common |I/O standards and associated IP blocks used for /O in many
SoCs. Another term for an I/O device is a peripheral device. /O is always performed in one of three
ways:

1. Under polled I/0, a processor periodically inspects the status register of an /O device to see
whether any data have arrived or whether it is ready to send new data. Polling wastes processor
cycles and is normally avoided. It is used only in very simple bootloaders and error handlers when
the main operating system is not running.

2. Under interrupt-driven I/O, a device raises an interrupt request signal when it requires service.
The processor then saves what it was doing and inspects the status registers, as with polling.
However, the periodic overhead is avoided.

3. Under direct memory access (DMA) I/0, the device itself initiates transactions on the bus and can
load and store its data to primary storage. Interrupts are raised only when a new memory region
needs oto be provided or serviced by the processor. For further details, see Section 2.7.5.

The first two of these are known as programmed I/O (PIO), since the processor moves the data.

A complex SoC may have many hundreds of device registers. Processors with a narrow address bus,
such as the A16 microprocessors mentioned in Section 1.1.1, generally provide write and read
instructions for transferring data to and from 1/O devices. These access a different address space
from primary storage. It is called the /O space. This avoids using up primary address space with I/O
device registers. A32 processors have such a large primary space (4 Gbyte) that the overhead of
hundreds of device registers is insignificant. So, such processors, like the Arm architecture, do not
have I/O instructions. Instead, they access devices with memory store and 1oad instructions. This is
called memory-mapped I/O.
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2.7.1 Universal Asynchronous Receiver-Transmitter (UART)

A universal asynchronous receiver-transmitter (UART) is the IP block associated with the RS-232
serial port. UARTs were widely used in the 20th century for character 1/O devices (telepritners,
printers and dumb terminals). They are still commonly used in practical SoC designs since they are
some of the most simple and easy devices to get working. The first test that nearly any newly
developed SoC runs is to print ‘Hello, world’ from its UART. UARTSs are also found in virtualised form
entirely inside a SoC. For instance, it might be used instead of a bus connection to a ZigBee IP block.

Figure 2.29 Typical I/0 ports. Shown are two serial ports, one parallel port, one Ethernet port, two USB ports and three audio ports
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Interrupt +—— Sg;ieri?;?us Old wiring: RS232/V24
hren ———»| >
and <4— Baud "
hwen ——» Transmitter -
clock

LoGgic1 —— [ T e S S A S S
DO \D1 D2 ; D3, D4 | D5 D6 D7 I

USB
Stop .
) Start Bit H connection
Serial port protocol: Bit (one) : to workstation.

(zero)

Figure 2.30 Two typical configurations for a serial port using a UART. Inset: Serial port timing diagram. The old wiring to a D9 connector for an RS-232 port
is today often replaced with a very short connection to a second UART inside a USB dongle for connecting to a laptop

A serial port uses two independent simplex channels, one for output and one for input, to make a full
duplex channel. A nine-pin D-connector is used for the serial ports in Figure 2.29, but only one wire is
needed in each direction, as shown in Figure 2.30. The two data directions plus a ground pin mean
that only three out of the nine pins are actually used. The additional connections are sometimes used
to indicate device ready status and to implement Xon/Xoff flow control (Section 3.4.4). Data are sent
serially at a pre-agreed baud rate. The baud rate is the maximum number of transitions per second on
one of the signals. The effective data rate is less than the baud rate due to the overhead of the start
and stop bits. The baud rate and number of bits per word must be pre-agreed at each end, such as

19 200 bps and 8 bits. The device internally contains status and control registers and transmit and
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receive data FIFO buffers. In essence, any byte stored in the transmit FIFO buffer is converted to
serial form and sent. Received data are converted back to parallel form and stored in the receive FIFO
buffer. Interrupts are generated when the transmit FIFO buffer is empty or the receive FIFO buffer is
not empty.

Interrupt-driven UART Device Driver

A device driver is a piece of software that connects an I/O device to the operating system. Although
devices vary greatly in structure and detail, a homogeneous interface is needed for the operating
system. At the lowest level, Linux and Unix have only two device types: character and block.
Higher-level classifications split devices into classes such as printers, storage devices, network
interfaces, cameras, keyboards and so on, but these classifications are for ease of management and do
not effect the device driver interface. A UART is a character device, since it nominally presents one
byte at a time. Ethernet and disks are block devices, since the unit of data transfer is an array of bytes.
The characters from a character device are normally aggregated to some extent to amortise handling
overheads. For instance, a write system call may transfer a buffer of characters to a UART, but no
semantic boundary is introduced.

The device driver code starts with a definition of the registers accessible by PIO. Device drivers are
normally written in C. Here is C preprocessor code to define the I/O locations in use by a simple UART
device:

// Macro definitions for C preprocessor enable a C program to access a hardware

// UART using PIO or interrupts.
#define I0_BASE OxFFFC1000 // or whatever

#define U_SEND 0x10
#define U_RECEIVE 0Ox14
#define U_CONTROL 0x18
#define U_STATUS 0x1C

#define UART_SEND() \
(x((volatile char *)(I0O_BASE+U_SEND)))

#define UART_RECEIVE() \

(*((volatile char *)(IO_BASE+U_RECEIVE)))
#define UART_CONTROL() \

(x((volatile char *)(IO_BASE+U_CONTROL)))
#define UART_STATUS() \

(*((volatile char *)(IO_BASE+U_STATUS)))

#define UART_STATUS_RX_EMPTY (0x80)
#define UART_STATUS_TX_EMPTY (0x40)

#define UART_CONTROL_RX_INT_ENABLE (0x20)
#define UART_CONTROL_TX_INT_ENABLE (0x10)

The following code implements a polled receiver. It spins until the empty flag in the status register
goes away. Reading the data register makes the status register go empty again. The actual hardware
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device may have a receive FIFO buffer, so instead of going empty, the next character from the FIFO
buffer would become available straight away:

char uart_polled_read()

{
while (UART_STATUS() &
UART_STATUS_RX_EMPTY) continue;
return UART_RECEIVE();
}

The output function is exactly the same in principle, except it spins while the device is still busy with
any data previously written:

uart_polled_write(char d)

{
while (!(UART_STATUS()&
UART_STATUS_TX_EMPTY)) continue;
UART_SEND() = d;
¥

Here is an interrupt-driven UART device driver:

char rx_buffer [256];
volatile int rx_inptr, rx_outptr;

void uart_reset ()
{ rx_inptr = 0; tx_inptr = O;
rx_output = 0; tx_outptr = 0;
UART_CONTROL () |= UART_CONTROL_RX_INT_ENABLE;
i
// Here we call wait() instead of “continue' in case the scheduler has something else to run
char uart_read() // called by application
{ while (rx_inptr==rx_outptr) wait(); // Spin
char r = buffer[rx_outptr];
rx_outptr = (rx_outptr + 1)&255;

return r;

char uart_rx_isr() // interrupt service routine
{ while (1)
{
if (UART_STATUS ()&UART_STATUS_RX_EMPTY) return;
rx_buffer[rx_inptr] = UART_RECEIVE();
rx_inptr = (rx_inptr + 1)&255;
¥

uart_write(char c¢) // called by the application
{ while (tx_inptr==tx_outptr) wait(); // Block if full
buffer[tx_inptr] = c;
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tx_inptr = (tx_inptr + 1)&255;

UART_CONTROL () |= UART_CONTROL_TX_INT_ENABLE;
¥
char uart_tx_isr () // interrupt service routine
{ while (tx_inptr != tx_outptr)
{

if (!(UART_STATUS ()&UART_STATUS_TX_EMPTY)) return;
UART_SEND() = tx_buffer[tx_outptr];
tx_outptr = (tx_outptr + 1)&255;
}
UART_CONTROL () &= 255-UART_CONTROL_TX_INT_ENABLE;
3

This code fragment illustrates the complete set of five software routines needed to manage a pair of
circular buffers for input and output to a UART using interrupts. If a UART has a single interrupt
output for both send and receive events, then two of the five routines are combined with a software
dispatch between their bodies. Not shown is that the interrupt service routine (ISR) must be prefixed
and postfixed with code that saves and restores the processor state (this is normally written in
assembler and provided by the operating system).

2.7.2 Parallel Ports Using General-purpose I/O

DATA
Parallel port
Strobe > protocol
target device.
Ack <

Strobe 4 \

Figure 2.31 Timing diagram for an asynchronous four-phase handshake

The second connector in Figure 2.29 is a parallel port. Although parallel ports are hardly used these
days, they provide a useful example for explaining general-purpose I/0O (GPIO) blocks. They also
demonstrates a class of very important asynchronous protocols. A parallel port is simplex: it carries
datain one direction only. It is asynchronous and its protocol is suitable for clock-domain crossing
within a SoC (Section 3.7.3). It follows the initiator/target paradigm with data being transferred from
the initiator to the target. The parallel port protocol defined originally by Centronics uses a total of
three handshake wires, but this is not necessary. Here we present the standard four-phase
handshake protocol, which uses a single control wire in each direction. The protocol isillustrated in
Figure 2.31. The initiator first puts a word on the data bus, then raises the strobe signal. When the
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target notices the strobe and is ready to accept the data, it raises its ack signal. The initiator then
de-asserts the strobe, ready for the next cycle. This makes a total of four phases. Note that the
various wires from the initiator to the target may vary slightly in length and stray capacitance.
Therefore, the initiator must pause for a de-skewing delay between setting the data on the data bus
for longer than the likely difference in any signal propagation time in the wires. This guarantees that
the data are valid at the target when the target sees the strobe.

A variation of the four-phase handshake is the two-phase handshake protocol. The third and fourth
phases are not used. The initiator places the data on the data bus, waits for the de-skewing delay, and
then toggles the strobe wire. It then waits for the target to toggle the ack wire. A toggle is a change of
state: one to zero or zero to one.

2.7.3 General-purpose Input/Output Pins

A parallel port can be implemented using a GPIO block, which has a number of GPIO pins. Such pins
can be for an input or an output that can be sensed, set or cleared under software control. GPIO pins
are commonly used for connecting to simple LED indicators and push switches. Commonly, they can
also generate interrupts. As noted above (2.7.1), a UART device requires two 1/O pins, one for input
and one for output. These are for special-purpose 1/0. A SoC may have two or four UART devices, but
not all of them are used in every design. The special-purpose I/O pins for unused I/O blocks can
normally be put into GPIO mode and used for GP1O. We will illustrate the details.

Figure 2.32 shows the general structure of a GPIO block schematically and in RTL. The block connects
to our MSOC1 bus from Chapter 1. All the internal registers are accessible from the host using PIO.
Each pin may be for either input or output as controlled by the corresponding bit in the data direction
register. When an output, the special function register enables it to be controlled from either the
GPIO block or a special function block, such as the UART, which is not shown. When a pin is GPIO
output, the data bit is whatever was stored in the data register by PIO. Interrupt polarity and masks
are available on a per-pin basis for received events. A master interrupt enable mask is also provided.

Other features typically found, but not illustrated, include a programmable pull-up or pull-down
resistor and slew rate control. The voltage gradient when changing from zero to one or back again is
called the slew rate. Many applications do not require a high transition rate, such as an LED. Low slew
rates, such as under 10V per microsecond, minimise radio-frequency interference (RFI) (Section 9.2)
and save energy too.

Using GPIO for a Parallel Port

The four-phase protocol can simply be implemented using polling and GPIO. Such code has often been
used to connect to Centronics-style printers. The data-direction register is initialised with nine
output bits for the strobe and data and one input bit for the ack signal. The code then proceeds as
described in Section 5.4.8.
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4 ) // Programming model
Special Flunctlon reg [31:0] ddr; // Data direction reg
wdata _ Y < reg [31:0] sfunction; // Special mode
»D Q reg [31:0] dout; // Output register
ce reg [31:0] imask; // Interrupt mask
—> reg [31:0] ipol; // Interrupt polarities
reg [31:0] pins_r; // Registered pin data
Address _D
decoder —»D Q reg int_enable;// Master int enable (for all bits)
addr . Tristate VOPAD
> — -+ Buffer always @(posedge clk) begin
L pins_r <= pins;
hwen > ] - ° if (hwen && addr==0) ddr <= wdata;
N :I-» b a sfunction ° if (hwen &% addr==4) sfunction <= wdata;
_;e D if (hwen && addr==8) dout <= wdata;
rdaLa 32 similal if (hwen && addr==12) imask <= wdata;
< ? Q 4 pads if (hwen && addr==16) ipol <= wdata;
if (hwen && addr==20) int_enable <= wdatal[0];
l_> end
D Q Example
&3 ipol bit // Tri-state buffers.
> ufif bO(pins[0],
sfunction[0] ?special[0] :dout [0], ddr[0]);
l_» ... // 30 others here
D ar bufif b31(pins[31],
ge imask sfunction[1] ?special[31]dout[31], ddr[31]);
interrupt -— // Generally the programmer can read all the
< Other // programming model registers but not here
l_> 3 @ bits assign rdata = pins_r;
ce int_enable // Interrupt masking
GPIO —> wire int_pending = (|((pins_r ~ ipol)&imask));
assign interrupt = int_pending && int_enable;

Figure 2.32 Schematic and RTL implementation of 32 GPIO bits connected to an MSOC1 bus

2.7.4 Counter/Timer Blocks

Various counter/timer blocks are found in SoCs. Such a block can contain several independent timers
and counters, which are known as channels. A versatile channel can operate in several different
modes. Four to eight, versatile, configurable counter/timer channels are generally provided in one IP
block. The timer mode counts clock cycles and can generate periodic events, such as interrupts. The
counter mode counts events on an external input or measures clock pulses seen while the external
input is at a particular logic level. Timers are used as the basis of operating system timeouts and the
periodic context switch in an operating system, such as 10 or 100 ms. Counters, for example, are used
with certain types of shaft encoder applications such as a car rev counter. One of the channels is often
dedicated as the system watchdog timer (WDT), which performs a hard reboot if it is not serviced
within some time by the CPU (e.g. 500 ms).

A channel may operate in a third mode, acting as a pulse-width modulation (PWM) generator.
Channels in this mode produce a square wave of adjustable frequency and adjustable duty cycle.
PWM controllers are often used to control heaters, the brightness of LEDs or the colour of a
multi-colour LED. The frequency is relatively unimportant, but the duty cycle alters the brightness or
colour.
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// RTL for one channel of a typical timer

// Programmers' model state
reg int_enable, int_pending;

reg [31:0] prescaler;
reg [31:0] reload;

// Programmer-invisible internal state
reg ovf;
reg [31:0] counter, prescale;

wdata Counter/Timer
block

// Host write operations
always Q@(posedge clk) begin
if (hwen && addr==0) int_enable <= wdatal[0];
External Event 0 if (hwen && addr==4) prescaler <= wdata;
if (hwen && addr==8) reload <= wdata;
// Write to addr==12 to clear the interrupt
end
wire irq_clr = hwen && addr == 12;

rdata
le—

External Event1
addr

// Host read operations

hwen PWM 0 assign rdata =
I (addr==0) 7 {int_pending, int_enable}:
hren (addr==4) 7 prescaler:
) PWM 1 (addr==8) ? reload: 0;
interrupt

// A timer counts system clock cycles
// A counter counts transitions from an external input
always @(posedge clk) begin
ovf <= (prescale == prescaler);
prescale <= (ovf) 7 0: prescale+i;
if (ovf) counter <= counter -1;
if (counter == 0) begin
int_pending <= 1;
counter <= reload;
end
if (irg_clr) int_pending <= 0;
end

watchdog reset

// Interrupt generation
assign interrupt = int_pending && int_enable;

Figure 2.33 Schematic symbol for a counter/timer block and internal RTL for one timer function

All forms of channel are essentially a counter that counts internal clock pulses or external events. A
channel can either interrupt the processor on a certain count value or toggle its output wire. An
automatic reload register accommodates poor interrupt latency, so that the processor does not need
toreload the counter quickly before the next event. In PWM, the output line is driven by a comparator
that checks whether the counter is above a parameter register written by PIO.

The timer mode channelillustrated in the RTL of Figure 2.33 counts a prescaled system clock. All
registers are configured as bus addressable read/write resources for PIO. The SoC system clock can
be 100-600 MHz, so the prescaler is a simple divider that brings it down to a more useful frequency.
Instead of the prescaler, a counter counts cycles of an external input, as shown on the schematic
symbol. In this example, the interrupt is cleared by host PIO when it accesses a location that does not
provide any data at offset 12.
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2.7.5 DMA Controllers

; // State for programmers' model

interrupt DMA Controller reg [31:0] count, src, dest;
---------------- reg int_enable, active;

wdata

// Other local state

reg [31:0] datareg;

Target port reg intt, rwbar;

(completer port)

rdata

addr

always @(posedge clk) begin // Target

if (hwen && addr==0) begin

{ int_enable, active } <= wdatal[1:0];

_______________ intt <= 0; rwbar <= 1;

end
if (hwen && addr==4) count <= wdata;
if (hwen && addr==8) src <= wdata;
Initiator pOI’T if (hwen && addr==12) dest <= wdata;

m_addr (requester port) end
assign rdata = ...// Target readbacks

hwen

hren

m_wdata

m_rdata

m_wen
always Q@(posedge clk) begin // Initiator
if (active && rwbar && m_ack) begin
datareg <= m_rdata;
rwbar <= 0;

m_ren

m_ack

src <= src + 4;
end
C%RE S Primary if (active && !rwbar && m_ack) begin
H storage rwbar <= 1;
(etc) dest <= dest + 4;
count <= count - 1;
end
CORE S| Bus if (count==1 && active && !rwbar) begin
1 fabric i - 0:
S Do active <= 0;
intt <= 1;
DMA end
controller 0 D o end
assign m_wdata = datareg;
E_ assign m_ren = active && rwbar;
DMA assign m_wen = active && !rwbar;
= controller 1 > = assign m_addr = (rwbar) 7 src:dest;
assign interrupt = intt && int_enable;

Figure 2.34 A simple DMA controller: schematic symbol, example TLM wiring and RTL for one channel

A DMA controller makes direct memory access transfers. DMA controllers are either stand-alone, as
illustrated in Figure 2.34, or built in to other I/0O devices, such as a streaming media device

(Section 2.7.6). They move blocks of data from one part of the system to another. A DMA controller
needs to be both a bus target (so that it can be programmed by the host CPU) and also a bus initiator
(so that it can manipulate primary storage). The schematic symbol shows that it has two complete sets
of bus connections. Note the reversal in the direction of all nets on the initiator port. The TLM
diagram in the figure shows the bus connections required for a small system with two CPUs and two
DMA controllers. These four devices are initiators for bus transactions.

Our simple DMA controller has one channel, which can perform only one operation. Real-world DMA
controllers tend to have multiple channels, which is semantically the same as having multiple
single-channel DMA controllers, give or take a master control register for interrupts etc. The
illustrated RTL for the controller can just make block copies. It uses source and destination pointer
registers, which must be set up by the host CPU. Likewise, the block length is set in a third register.

72



Chapter 2 | Processors, Memory and IP Blocks

Finally, a status/control register controls interrupts and kicks off the procedure. Real-world DMA
controllers are often more complex. For instance, they can load the block move parameter registers
from meta-blocks set up in memory by the host CPU and can follow linked lists of such meta-blocks.

The RTL code for the controller is relatively straightforward. Much of it is dedicated to providing the
target-side PIO access to each register. The active RTL code that embodies the function of the DMA
controller is contained in the two blocks qualified with the active net in their conjunct. A concrete
TLM model of this same DMA controller is given in Section 5.5.2 and can be downloaded from the
supporting material.

The figure shows two simple target I/O devices, DO and D1. Quite often these may have data registers
such that a packet or block is formed using successive words written or read to a single data-register
location. In these cases, the DMA controller needs a mode in which either the destination or source
pointer is not adjusted inside the loop, depending on whether it is sending or receiving, respectively.
For instance, to play audio out of a sound card, the destination address could be set to the PIO address
of the output register for audio samples and set not to increment. The block size would need to be
smaller than the device’s staging FIFO buffer (Section 2.7.6).

Another processor core can be used instead of a DMA controller. If the processor ‘runs out of’ (i.e.
fetches its instructions from) a small local instruction RAM or cache, then the code reads will not
impact the main memory bus bandwidth. The silicon area of a very basic processor is not necessarily
much larger than that of a DMA controller.

2.7.6 Network and Streaming Media Devices

Network devices, such as Ethernet, USB, Firewire and IEEE 802.11, are similar to streaming media
devices, such as audio, and modem devices. All such devices commonly have embedded DMA
controllers. Only low-throughput devices, such as a UART, are likely not to use DMA.

Figure 2.35 shows a schematic symbol of a network or streaming media device. It is the same as the
DMA controller in Figure 2.34 except for additional device-specific functionality and wiring. In
particular, there is a physical-layer interface to the external medium. The physical medium is generally
glass fibre, copper or wireless. Wireless interfaces are illustrated in more detail in Figure 6.1. Each
type of media requires specialised circuitry to drive it. This is called the PHY or analogue front end
(AFE). Sometimes this circuitry can be fully embedded on the main SoC chip (which is very common
for USB) and other times it cannot, due to voltage swings, the operating frequency or noise levels
(Section 8.4). Copper cables, such as used for the Ethernet CAT5 RJ45 shown on the right-hand side
of Figure 2.29, require electrical isolation and miniature transformers. Further transformers, known
as baluns (balanced-to-unbalanced transformers) and further inductors can suppress
radio-frequency interference (RFI). This entire block is known as the PHY magnetics and is often
integrated inside the RJ45 connector.

A network interface IP block is known as a network interface card (NIC). However, for SoC use, a
better acronym would be network interface controller since it is integrated on the chip instead of
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interrupt Network Device

wdata Target port
(completer port)
rdata

Magnetics
addr

hwen

hren g :
.................. Connector

m_wdata Initiator port
(requester port) Physical Layer
m_rdata Data FIFOs Interface

m_addr

m_wen

m_ren

m_ack

Figure 2.35 Net-level schematic symbol for a DMA-capable network interface IP block

being a pluggable card. A NIC contains a block known as the media access controller (MAC), which
handles the framing preambles, postambles and CRCs. It also decides when to transmit, using a
protocol such as carrier-sense multiple access with collision detection (CSMA-CD) for Ethernet.

For streaming media with hard real-time characteristics, such as audio, video and modem devices,
small staging FIFO buffers are needed in the device because the initiator port may experience latency
when it is serviced by the bus fabric. The embedded DMA controller then initiates the next burst inits
transfer when the local FIFO buffer reaches a trigger depth. Using DMA offloads work from the main
processor, but, equally importantly, using DMA requires less data-staging RAM or FIFO bufferingin a
device. For the majority of SoC designs, RAM is the dominant cost in terms of SoC area. If the staging
FIFO buffer is too small, then overruns or under-runs can occur. An overrun occurs when too much
data are received and the memory system is not responsive enough for the data to be saved before
the staging FIFO buffer overflows. The data must be deleted, causing knock-on effects (such as audio
artefacts or packet retransmissions). Likewise, an under-run occurs when the sending FIFO buffer
becomes empty because the memory system has not been fast enough in servicing it. This can also
cause glitches in hard real-time media, such as audio, but may be less of a problem with packet-based
network interfaces that allow gaps between packets.

A DMA controller in a network or streaming media device can often follow elaborate data structures
set up by the host CPU, such as linking and delinking buffer pointers from a central pool. Due to the
virtualisation requirements for a NIC in cloud computing, for server-grade NICs, the DMA system
may be able to demultiplex packets based on VLAN number and store them in different buffers.
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2.7.7 Video Controllers and Frame Stores

A bit-mapped frame store or video controller presents each word in its memory as a different pixel on
a screen. For monochrome, the words can be 1 bit wide, denoting black or white. The designs of video
interfaces have evolved along with the history of television. Today’s flat panel displays use essentially
the same signal set and protocols as an analogue video monitor from 1950. A frame store reads out
the contents of its frame buffer over and over again at the frame refresh rate, which is commonly

60 Hz.

A 3-bit RGB word can render the eight basic saturated colours: black, white, magenta, cyan, red etc.
To show other colours, a video digital-to-analogue convertor (DAC) is used to drive the red, green
and blue primary colour signals. In modern DVI and HDMI ports, the DAC is at the display end of the
monitor cable, which is then digital. A DAC is typically integrated into the driver ICs that directly
connect to the transparent conductors within the panel.

In our simple reference implementation of Figure 2.36, the memory is implemented in a Verilog array,
which has two address ports. Another approach is to have a single address port and for the RAM to be
simply ‘stolen’ from the output device when the host makes a write to it. This causes noticeable display
artefacts if writes are frequent. Real-world implementations use pseudo-dual-porting (Figure 4.19).
This frame store has a fixed resolution and frame rate, but real ones have programmable values read
from registers set up by the host CPU under PIO instead of the fixed numbers 230 and 110. This
frame store is an output-only device that never becomes busy or ready, so it generates no interrupts.
The device driver needs to know the mapping of RAM addresses to screen pixels and has zeroed the
locations read out during horizontal and vertical synchronisation. Real implementations do not waste
memory in this way and pause the supply of video data during the blanking intervals. A secondary link
is included in contemporary video cables so that the display size can be read from an electronic data
sheet stored in serial ROM inside the display. This is called a display data channel (DDC).

wdata Framestore reg [2:0] framestore[32767:0];
reg [7:0] hptr, vptr;
output reg [2:0] rgb_video;

video output reg hsynch, vsynch;
haddr
LCD Panel .
hsynch or CRT always Q@(posedge clk) begin
n hptr <= (hsynch) ? 0: hptr + 1;
wen vsynch hsynch <= (hptr >= 230)

if (hsynch) vptr <= (vsynch) ? 0: vptr + 1;
vsynch <= (vptr == 110)

if (hwen) framestore[haddr]<= wdata[2:0];

video /*elsex/ rgb_video <= framestore[{vptr[6:0], hptr}];

RPN | N N S S N B ) end
I

vsynch

Figure 2.36 Structure of a simple frame store, RTL implementation and generated timing waveforms
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The frame store in this example has its own local RAM. This reduces RAM bandwidth costs on the main
RAM but uses more silicon area, a delicate trade-off. Video adaptors in PCs have their own local RAM
or DRAM and also a local graphical processing unit (GPU) that performs polygon shading and so on.

2.7.8 Doorbell and Mailbox Blocks

An inter-core interrupt (ICl) facility is needed for basic synchronisation between separate cores
within a SoC, for instance, if one CPU has placed a message in a shared memory region for another to
read. The ISA for a processor may have a specialist ICl instruction, but this instruction may not work
between different types of processor. An external IP block is then needed. The ICI function could be
included in the interrupt distributor, which allows any device interrupt to be routed to any core with
any priority (Section 2.5). Alternatively, a bespoke doorbell and mailbox block can be used.

Such a device offers multiple target interfaces, one per client bus. Figure 2.37 shows a dual-port
device, but n-way can be deployed as required. The basic operational sequence is for one core to write
aregister in the interrupt that asserts an interrupt net connected to another core. The ISR of the
interrupted core reads or writes another register in the interrupter to clear the interrupt.

wdata +’ Dual Port Interrupter <+ wdata

(further target ports sometimes exist)

rdata 4+ '+> rdata
addr +> Target Target <+ addr

port A port B
hwen ——————" (completer) , -< (completer) [« hwen

hren —————» [¢— hren

m_ack €———— . . > m_ack
Pigeon hole registers
interrupt €¢——— on Mailbox variant. > interrupt

Figure 2.37 Doorbell and mailbox block

The mailbox variant supports message passing using a small internal FIFO buffer or scratchpad RAM
inside the device. The interrupt is then generated after the message has been entered into the
internal storage. Likewise, it is cleared as the receiver reads out the message.

2.7.9 Performance Management Units

A performance management unit (PMU) contains counters that can be programmed to count
architectural features, such as instruction fetches and cache misses. A typical PMU has a small set of
event counters, usually at least 10x fewer than the number of possible event sources. Hence, a
programmable event routing matrix is needed to map events to counters. Moreover, the event
counters may be limited in range, such as to 32 bits. To reduce any overflows at the expense of
precision, the prescalers can be programmed so that the readable counter is incremented only after,
say, 1024 real events have occurred. Even so, the counters may still overflow and it is not uncommon
to use an operating system daemon, such as oprofile in Linux, to convey the hardware counts to
software mirrors at a rate of 10 to 100 Hz.
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For a core, events typically include page table misses, branch mispredicts, instructions retired, cycles
out of halt mode or at various privilege levels, loads, stores, stalls and interrupts. For a cache, the
number of hits, the number of sharing evictions and each type of miss may be recorded, although
compulsory and capacity misses cannot be distinguished by the hardware.

2.8 Summary

A simple processor consists of a register file, an arithmetic and logic unit (ALU) and a control unit. The
register file and ALU collectively form the execution unit. A SoC typically contains multiple
processors, perhaps of different specialised types. A processor, together with any dedicated cache
and coprocessors is known as a core. At reset, one of the cores, the boot-up core, starts execution,
which initiates the start-up of the other cores (Section 9.1).

Memory systems are complex, especially if there are multiple initiators of bus transactions, such as
multiple processor cores and DMA engines that all need to move data around. The designer needs to
select which initiators can access which memory resources and whether cache consistency is
worthwhile. The whole of the memory system, including its caches, is normally placed on the main
SoC, except for the DRAM. DRAM may be placed in the same chip package as an MCM (Section 8.9.1).

As well as the memory system, numerous I/O peripherals and other IP blocks are placed on the SoC.
Some are general purpose (such as USB) and others application-specific, such as a printer mechanism
controller. Arranging a DRAM and designing its controller are very important. These are discussed
later in Section 4.5, after we have discussed interconnects in the next chapter.

2.8.1 Exercises

Note: The exercises in this chapter are somewhat different from those in other chapters, since they
assume a broad basic knowledge of processor architecture and assembly language programming.
They may require materials not presented here.

1. Give examples of assembly language programs for a simple in-order processor that could suffer
from each of the following problems and describe hardware or software mitigations: (i) a control
hazard, (ii) a hazard arising from the ALU being pipelined and (iii) a load hazard, even though the
data arein the cache.

2. Ifthe front side of a cache has the same throughput as the back side, since it has half the word
width and twice the clock frequency, for what sort of data access pattern will the cache provide

low performance?

3. Ifasuper-scalar processor shares FPUs between several hyper-threads, when would this enhance
system energy use and throughput and when will it hinder them?
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10.

Why has serial communication been increasingly used, compared with parallel communication?
Compare the parallel ATAPI bus with the serial SATA connection in your answer.

Assume a processor has one level of caching and one TLB. Explain, in as much detail as possible,
the arrangement of data in the cache and TLB for both a virtually mapped and a physically
mapped cache. If a physical page is in more than one virtual address, what precautions could
ensure consistency in the presence of aliases? Assume the data cache is set associative and the
TLB is fully associative.

What are the advantages and disadvantages of dynamically mapping a device interrupt to a
processor core? What should be used as the inputs to the mapping function?

If a new variant of a microcontroller uses a single non-volatile memory technology to replace both
the static RAM and mask-programmed ROM, what are the possible advantages and
disadvantages? Is this even possible?

Some PC motherboards now have slots for high-performance non-volatile memory cards. How
can these be used for primary or secondary storage? Should computers continue to distinguish
between these forms in their architecture?

Briefly describe the code and wiring needed for a seven-segment display to count the number of
presses on an external push button accurately. Note that mechanical buttons suffer from contact
bounce. Use polling for your first implementation. How would you adapt this to use a
counter/timer block and interrupts? What are the advantages of the button and the display?

A SoC is required to have frame stores for video input and output. Could these follow essentially
the same design with minor differences? Would it be sensible to support a number of
dual-purpose frame stores that can operate as either an input or output?
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3.1 Interconnect Requirements

As discussed in the previous chapter, a SoC contains a large number of reusable IP (intellectual
property) blocks. These need to be wired together by a SoC interconnect, which is the subject of this
chapter. An interconnect primarily carries transactions that are started by a transaction initiator
(also known as the requester or manager) and served by a target (also known as the completer or
subordinate). The interconnect conveys the command from an initiating IP block to a target block and
aresponse back again.

The traditional way to connect such blocks is to use a so-called bus, but, as we explain here, the term
has evolved in meaning and is now pretty much a misnomer. In all but the most basic SoC designs,
more than one initiator needs to be supported. As well as CPUs, direct memory access (DMA)
controllers and other devices that perform DMA are initiators. Contention (competition) for
resources can arise. Arbitration is required to manage how they are shared. There are two main forms
of contention - fabric and target - as discussed in Section 4.2.1. So, an important aspect of designing
an interconnect is providing sufficient bandwidth and implementing management techniques that
allocate what is available.

In modern SoC flows, we expect all of the interconnect details to be designed by one or more system
interconnect generator tools, which also generate documentation, device driver header files and test
software (Section 6.8.2). An interconnect generator will ideally use the same architectural design files
as used in the high-level ESL models used in the virtual platform (Chapter 5).

The transaction types typically provided by an interconnect can be classified as follows:

1. Single-word reads and single-word writes are the smallest individual operations or transactions.
Data are moved from the initiator to the target for a write or store operation and in the other
direction for a read or load operation. The initiator is typically a processor (or the back side of a
cache) and the target is typically a memory or peripheral device. Word writes are often
accompanied with lane flags so that only certain bytes within the word are updated. The flags are
used when storing bytes and half words and for unaligned writes that straddle word boundaries.

2. Uncached reads and writes are also commonly required for |/O devices (when an MMU is not
being used to define what is cacheable). For instance, the AMBA AXI protocol supports 12
different read and write semantics for the detailed interactions with caches, just for read and
write data (e.g. write-through, write-allocate, write-back, etc.) [1].

3. Since individual reads and writes have too much overhead when more data needs to be moved,
most forms of interconnect support block or burst transfers, in which larger quantities of data
(128 bytes to 4 kB) are moved as a single transaction.

4. Broadcast and multicast transactions allow the same data word to be written to more than one

destination at a time. A similar transaction type is pseudo DMA, in which data are moved between
two target devices, one reading and the other writing, while the initiating CPU core ignores the
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data on the bus. Real DMA can follow the same pattern (Section 2.7.5), the difference being that
the initiator is a dedicated controller instead of a CPU core that is executing a dummy read
transaction.

. Atomic operations are needed in all multiprocessor systems. The conventional operations are

test-and-set and compare-and-swap. These require two successive operations on an addressed
location without pre-emption. This does not scale well to multi-initiator systems, so load-linked
and store-conditional single-word operations are, typically, more common today (Section 3.1.7).

. If the order of delivery of the data is critical (which is the normal case), the interconnect must

observe sequential consistency primitives or memory fences (Section 4.5). For instance, the
arguments to a device command must arrive at an I/O device before the go command is received.
An interconnect that supports transaction buffering can allow transactions to arrive out of order,
unless sequential consistency is managed implicitly or through explicit fence operations.

. Cache consistency or data coherency messages are also conveyed between components that

perform caching to ensure that out-of-date data are not erroneously served for aread (e.g. the
AMBA ACE protocol).

. Itis common for an interconnect to carry read-ahead or warm-up traffic. These are read cycles

whose results might not be needed but allow data to be loaded speculatively so that the data are
available with lower latency if needed.

. There will frequently be a completely separate interconnect network for debug transactions

(Section 4.7). One advantage of a separate network is its unobtrusiveness, since certain bugs are
hard to track down if the bug’s behaviour changes when debug instrumentation is enabled. Also,
there may be a considerable amount of data moving over the debug network if intensive logging of
the main network traffic is enabled. The dark silicon argument (Section 8.2) enables the provision
of extensive, yet seldom-used, additional infrastructure at costs lower than might be expected.

Configuration operations, such as presence probing and other miscellaneous operations, must
also be conveyed in some systems. For instance, several instances of an identical IP block need to
be given different base addresses. Alternatively, the operating system would need to determine
which IP blocks are present on the platform it is running on. When the base address is not
hardwired at SoC tapeout (Section 8.7.7), there must be transactions to configure the base
address before normal programmed |/O can proceed. These can also make device drivers more
generic (Section 3.1.7).

Secure systems, such as those using hardware capabilities or which otherwise track ownership of
the data using hardware (Section 3.1.4), need to convey tagged data. Tags are also used for
associating transactions with their responses in some bus protocols that we will cover. These tags
are generated by the hardware and not visible to the programmer.
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Interrupts must also be conveyed from devices to processors (Section 2.5). Interrupt wiring was
traditionally part of the ‘bus’ standard when child boards were plugged into a motherboard bus.
However, for SoC design within the ASIC, interrupts are typically conveyed by separate wiring that is
not related to the nets carrying transaction data. The same goes for power management signals that
ensure that a peripheral is suitably able to handle a request (Section 3.7.5). The system integration
tool must instantiate these nets as it configures the interconnect.

A read transaction clearly requires a response that contains the data. A write transaction does not
strictly require a response. The initiator may proceed optimistically, assuming success. This is known
as write posting. However, it is normal practice for all transactions to receive an acknowledgement
containing a response code. Since an interconnect is designed to be reliable, the standard assumption
for simple microcontroller systems is that there are no errors in the hardware. Hence, transactions
always complete successfully and no fault handlers are required (except for a watchdog timer
(Section 2.7.4)). However, a number of possible errors can arise in modern SoC designs and these
need to be handled appropriately, which could be a retry in hardware or an exception interrupt being
raised for software handlers to deal with.

Sources of bad response codes include:

" The addressed target may be powered down, disconnected or otherwise not ready for the
operation.

= Unused address: No device is mapped at the target address.

= Address translate error: The address translation unit (or /O MMU) does not contain an entry for
the initiator-supplied address.

= Parity, CRC or ECC failure: A data integrity error was encountered in the interconnect circuits or
else a checked memory target was addressed and the memory parity or CRC check failed
(Section 4.7.6).

® Store-conditional fail: The atomic operation was pre-empted (Section 3.1.7).

® Adirty data failure arises in some cache consistency protocols (Section 2.4.1).

" Asingle-event upset arises from a burst of radiation or an alpha particle hitting the silicon
(Section 8.2.1). This may be detected or corrected using parity or ECC mechanisms, or it may be an
undetected error at the interconnect level.

An interconnect standard defines a set of nets and a net-level protocol that together support the

various transactions. An example is the nets and protocol of MSOC1 in Figure 1.5. According to the

context, we normally use the short word ‘bus’ interchangeably for ‘interconnect standard’ and
elsewhere for all of the components that make up the interconnect of a particular SoC. Preferably, the
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various IP blocks must all be designed according to the interconnect standard. They may have more
than one port, but each port follows the standard. SoC assembly is easiest if all IP blocks use the same
interconnect standard. Modern interconnect standards, such as AXI, have defined functional profiles
in which a subset of the full functionality is present within a profile. Having predefined functional
profiles makes it easy also to provide a set of protocol adaptors that map between the profiles.

3.1.1 Protocol Adaptors

For each parameterisable bus standard, an exponentially large number of protocol adaptors and bus
bridges is required. There is a small number of basic operations, such as FIFO buffering, policing, width
converting, domain crossing, multiplexing and demultiplexing. Some set of these functions needs to
be deployed in a protocol adaptor. The number of ports, the direction of the ports, port widths,
protocol profile (e.g. the Lite variant) also vary. Enumerating all possibilities as library components is
not practical. Hence, a tool that generates efficient RTL implementations is generally required.

Given the required functionality, further variation arises from the order of composition of the basic
operations. For example, a simplex demultiplexer that also converts the bus width and embodies a
short FIFO buffer can be constructed in many ways. Four of the six basic permutations are shown in
Figure 3.1. Although these vary in terms of head-of-line blocking behaviour (Section 4.3.2), they
otherwise behave almost identically provided the re-arbitration points are appropriately constrained
to avoid misinterleaving of transaction beats for a burst transaction (e.g. AXI has the LAST signal for
this purpose but AXI-Lite handles only single-beat transfers).

32 8 32 8
Serialiser FIFO Serialiser
FIFO
32 8 32 8
a) Demultiplexor Serialiser b)  Demultiplexor FIFO Serialiser
) 32 8 8
—/—> Serialiser FIFO
32 8 32
Serialiser FIFO _/_,
8 32 8 8
c) Demultiplexor d)  Demultiplexor  gerialiser FIFO

Figure 3.1 Four of six permutations that implement a simplex protocol adaptor. Each has the same signature of one input and two output ports of 32 and
8 bits, respectively. More typically, duplex implementations are required

Design Considerations and Physical Constraints

The aim of an interconnect design is to be as unobtrusive as possible, both at design time and in use.
Broadly speaking, these are the most fundamental parameters for an interconnect:

= The baseline connectivity matrix records which initiators need to communicate with which targets.

= The throughput is the amount of data it can move per unit time, normally measured in MB/s
(megabytes per second). For instance, in 2005, a bus that was 128 bits wide and had a clock
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frequency of 200 MHz could convey a peak of 3200 MB/s, or roughly 3 GB/s. A typical application
processor today may use a 1 GHz clock for cross-bar interconnect and up to 2 GHz for mesh or ring
interconnect. Hence throughputs five or ten times greater are typical.

= The latency is the time a transaction takes to complete. For many applications, a transaction
cannot be initiated until the previous transaction has returned its result, such as when following a
linked-list structure. Hence, latency is very important.

= A quantified version of the connectivity matrix records the expected traffic pattern in terms of
peak and average bandwidth needs between each end point. Ideally, an interconnect is planned and
dimensioned using this information. Both the throughput and the latency will tend to degrade if the
actual traffic patterns vary significantly from the expected use pattern, unless the interconnect
supports a high degree of connectedness such that all possible patterns of use are equally well
served. However, this can lead to over-engineering.

" The energy consumption of an interconnect is also very important in modern SoCs. Energy use is
proportional to the distance that data moves across the chip (Section 4.6), which may depend on
the amount of deviation from the planned traffic flow.

= Support for real-time traffic with a guaranteed quality of service (QoS), is commonly needed. The
QoS can be quantified, as discussed in Section 4.3, and recorded in the connectivity matrix. QoS
mechanisms within an interconnect ensure that tasks can be completed by relevant deadlines while
avoiding starvation for lower-priority traffic.

= All types of interconnect tend to contain loops. They could be in the forward and reverse
handshaking logic on a simple path, or composed of multiple switched segments in a mesh. Such
loops are liable to become deadlocked. A deadlock is a ring of components each waiting on the next.
The need to avoid deadlocks restricts the interconnect design space and must always be taken into
account (Section 3.4.3).

Physical Constraints

Today, it is not sensible to send data at a high rate from one side of a chip to the other using just wiring.
Buffering and re-timing are needed. The normal approach today for a single clock domain (CD) is to
add a pipeline stage (Section 4.4.2) to all nets of the bus. The protocol must tolerate this. A pipeline
stage may also be needed in the reverse flow direction.

Crossing CDs requires domain-crossing logic. If the clocks originate from the same master source,
they are synchronous (harmonically locked) and domain crossing can be relatively simple and
efficient. If the clocks are asynchronous, then the logic must be carefully designed to avoid signal
sampling issues, such as metastability (Section 3.7.1). Transmitting data consumes energy and incurs a
delay. In the absence of electrical resistance, the speed of propagation of an electrical signal ¢
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depends on the dielectric constants of the materials. The speed is also the product of the wavelength

and frequency:
1

N
The propagation constant relevant for silicon chips is the relative permittivity since there are no
magnetic effects from any of the materials in use. For silicon dioxide, e, = 3.9, which means signals are
limited to 1/\/@, which is about half the speed of light in a vacuum. The capacitance per unit length
of aconductor that is spaced a diameter away from the next one is approximately 83 pF/m. The
inductance of conductors that are much longer than their diameter (e.g. 500 times longer) is about

1.4 uH/m. To achieve a propagation speed that is half the speed of light, which is 150 m/us, means that
for a clock frequency of 2 GHz, the wavelength must be 7.5 cm. The clock will be 180° out of phase (i.e.
inverted) within 3.75 cm, even in the absence of resistance. However, the principal idea of digital logic
modelling (Section 4.6.4) is that all parts of a net are at the same voltage. This is approximately true
for up to 1/10th of a wavelength, so the speed of light limits the length of a conductor to 75 mm, which
is less than the diagonal of many SoCs.

c= Af

L and C are independent of manufacturing geometry and their ratio remains constant with technology
scaling. Resistance is a different matter. Aluminium nets have a conductivity of about 2.7 x 108 Q m.
Their resistance per unit length increases as they are made thinner. The wiring pitch for the finest
nets is typically about 51 and their thickness and height are both about 2.51, where A is now not the
wavelength, but a measure of the the fabrication geometry (Section 8.2). Because both height and
width have been made finer and finer over recent decades, there has been a near quadratic growth in
resistance (the height has not been reduced as much as the width). This increase in electrical
resistance creates an RC propagation delay that now reduces propagation speeds well beyond the LC
transmission line (speed-of-light) delay.

Figure 3.2 plots the RC delay against net length for fine-pitched nets made in 45 nm and 16 nm
processes. These are computed using the simple EImore delay model (Section 4.9.5) that ignores
inductance. Also shown is the transmission line delay for a lossless LC line, which should be included
when significant. System design rules based on these figures dictate how frequently a signal needs
regenerating as it traverses a chip. Clearly, several D-types are needed if it passes from one corner of
even asmall 8 mm SoC to the opposite corner. For any geometry, the design rule used for timing
closure (Section 8.12.16) must be conservative. The plot shows a simple linear bound of 1600 nm/us,
as used in arecent 16 nm tapeout. Since any net that is required to be faster than this conservative
bound violates the rule, it must be redesigned. The delay, as given by the Elmore curve, will exceed the
delay anticipated by the simple linear rule for long-distance nets, but such nets are either not allowed
by other design rules or else routed on higher metal layers with perhaps twice the width and
thickness, and hence, 4x less delay.

The signal restoration and amplification considerations are the same whether a signal is conveyed
across the chip using combinational or synchronous buffers. Digital signal restoration is the process
of removing noise and ensuring the voltage falls properly within the logic margins that define a zero or
one. As explained in Section 2.6.3, the logic margin is how far the signal is below the maximum
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Figure 3.2 Comparison of speed-of-light (LC) and RC-based Elmore delay models for propagation along a net. Also shown is a real-world design rule for
16-nm geometry

specified logic zero voltage or how far above the minimum logic one voltage it is. A plot of output
voltage against input voltage for a logic gate is called its voltage transfer characteristic. All logic gates
have an amplification factor (gain) of well less than unity within the logic zero and logic one input
regions, with a high gain region in between (Figure 3.33). If this were not the case, digital logic would
lose its fundamental property of keeping the zeros and ones properly distinct. The circuit noise will
become amplified if the signal is in a region with an absolute gain greater than unity.

Two extreme approaches to sending a signal a long way over a chip are:
1. Use many low-power buffers spaced evenly along the signal path.
2. Use one powerful buffer at the start of a single piece of metal track.

Neither of these is good. A large buffer will have wide transistors and a large input capacitance.
Moreover, invertors are far more efficient than buffers in CMOS, so having two invertors with a
section of wire between them is better than a buffer. Generally, spacing out four invertors can be a
good design for a long net. If these have different drive strengths (Section 8.4.1), the lowest power
invertor is placed at the start of the chain. If the net has to fan out to multiple destinations, the best
structure can be manually determined using logical effort analysis [2], or simply left to a logic
synthesiser tool (Section 8.3.8).

Another physical constraint for an interconnect is its wiring density. Wiring congestion is an issue for
crossbar interconnects (Section 3.2.3) or narrow routing channels (Section 8.3.12). However, the
wiring problem has been reduced to a large extent with newer interconnect technologies, such as a
network-on-chip (NoC), unless the channels are very narrow. The wiring density on the lowest levels
of metallisation is similar to the transistor size, but it becomes coarser at the higher levels. The
highest levels are always reserved for power distribution, since this requires the lowest fidelity. Any
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modern technology can support thousands of nets per millimetre per layer. Hence, busses 128 bits
wide or wider, which would cause layout difficulties for PCB design, are not a serious concern for VLSI,
although the area penalty of turning 90° at a corner is not trivial. As mentioned, very thin nets have a
high resistance, which can be a consideration for exceptionally dense wiring owing to the increase in
the RC signal delay.

The ability to use wide busses and the need to use delay-tolerant protocols have led the industry
towards bus protocols that are optimised for large transactions. For a given data rate, a wider data
bus means a lower transaction frequency. Architectural design approaches reflect this. For instance,
the traffic at the back side of a cache has a pattern much more like this than the front-side traffic.

3.1.2 On-chip Protocol Classes

On-chip interconnects can be broadly classed as circuit switched or packet switched. A basic
circuit-switched configuration makes an electronic connection between a number of wiring segments
to form an initiator-to-target connection that lasts for the duration of a transaction. Our MSOC1
protocol is an example (Section 1.1.4). Most modern forms of interconnect decouple the initiation and
response phases of a transaction but retain the circuit-switching concept for each half, certainly for
short distances. The wiring segments are joined by multiplexer structures. The presence of D-type
re-timing (pipeline stages) at the joints does not alter the classification because, to a first
approximation, all of the bus resources used for the transaction (or transaction phase) are tied up for
the duration and cannot be concurrently used by other transactions.

On the other hand, in a packet-switched configuration, each interconnect resource is tied up only
while it is forwarding part of the transaction to the next interconnect resource. A transaction typically
has a longer duration than the involvement of any interconnect component in handling that
transaction. This forms the basis for one type of NoC that we discuss in Section 3.4.

3.1.3 Simple Bus Structures

Leaving aside bridged bus and NoC structures, the following taxonomy is useful for discussing
protocols for simple bus structures. These simple structures also form the baseline for discussing
individual links in a NoC mesh.

1. Reciprocally degrading busses: The throughput is inversely proportional to the target latency in
terms of clock cycles, such as the four-phase handshake (described next) and AHB (described
below).

2. Split-port busses: These have separate request and acknowledge channels that carry different

transaction phases with independent timing. (Note: A different use of the word ‘split’ describes a
burst transaction that is temporarily paused while a higher-priority operation takes place.)

89



Modern SoC Design

3. Delay-tolerant busses, such as AX|4-Lite (Section 3.1.5) and BVCI (described below): New
commands may be issued while awaiting responses from earlier commands.

4. Reorder-tolerant busses: Responses can be returned in a different order from the transaction
commands. This is highly beneficial for DRAM access and is needed for advanced NoC
architectures (Section 3.1.4). Examples include full AXI (Section 3.1.5).

A simple bus provides data movement, addressing and flow control. A simplex connection sends data
in one direction only. A half-duplex connection sends data in both directions, but only in one direction
at a time. Another name for half-duplex is time-division duplex. A full-duplex connection can send
datain both directions at the same time. A streaming connection does not include any addressing
capabilities. It is often simplex. A pair of streaming connections, one in each direction, can be used to
form a duplex streaming connection. For instance, the AXI4-Stream port is essentially the same as one
direction of a standard AXI port but without the address bus. It is like the standard synchronous
interface (see below). The AXI bus is described in Section 3.1.5.

For lossless reliable behaviour, a bus must also provide flow control, so that, on average, the rate at
which data or transactions are generated at the initiators exactly meets the rate at which they are
processed at the targets. If a destination (target) is slow, or not ready, it applies backpressure on the
source (initiator), so that new transactions or data are not generated until it is ready. If the source
cannot generate its next transaction because that transaction depends on the response to the current
transaction, we have a data hazard (Section 6.3). This is a common situation. The overall system
throughput, in terms of transactions per second, then depends on the round-trip latency, which is the
time between issuing a transaction and receiving the response.

Four-phase Handshake

Bus protocols vary in the maximum number of outstanding transactions they support. This is a key
metric that affects how throughput degrades as latency is increased. The simplest protocols allow
only one outstanding transaction.

A four-phase handshake (Figure 3.3) provides flow control for a parallel data channel of any number
of bits. It supports a simplex, in-order, lossless, infinite sequence of word writes. It was used on
parallel printer ports from the 1950s until replaced with USB. It has at most one transaction in flight,
so its throughput is inversely proportional to the round-trip latency. It is normally implemented
without a clock net and so is asynchronous. We cite it here as an important historic example. It also
serves as the basis for an asynchronous CD-crossing bridge (Section 3.7.3). The two-phase variant
transfers data on both edges of the strobe signal.

MSOC1 and AHB Protocols

As established in Section 3.1.1, nets can no longer pass a significant distance over a chip without
buffering. Registering (passing through a D-type pipeline stage) is the best form of buffering within a
CD, since it enables a higher clock frequency (Section 4.4.2). Hence, we must use protocols that are
tolerant to being registered on modern SoCs. Within a clock domain, it is always appropriate to use
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Figure 3.3 Timing diagram for AHB bus write cycle with one wait state

synchronous bus protocols. However, older synchronous bus protocols either intrinsically cannot
tolerate additional pipeline stages as their definition requires a response within some predefined
number of clock cycles (normally 1 or 2) or if they can tolerate it, tend also to suffer from the
reciprocal degrading problem. Our MSOC1 reference protocol (Figure 1.5) suffers in this way.

A real-world example is the AHB bus. This protocol was defined in the 1990s. Figure 3.3 shows the
principal nets used for a data write. The clock is shared by all participants. The address, write guard
and data are generated by the initiator and the HREADY signal is the handshake response from the
target. The figure shows that one wait state arising from the addressed target (or some intermediate
fabric part) is not ready for the write data. Hence, HREADY is de-asserted until progress can resume.

DATA _>
Parallel port

protocol
target device.

Strobe

A4

Ack =

Strobe 4 \

Figure 3.4 Timing diagram for an asynchronous four-phase handshake

In a basic AHB implementation, only one transaction may be outstanding at one time and the bus nets
are idle in wait states. This is wasteful. However, unlike our simple MSOC1, AHB supports burst
transactions, in which multiple data words can be sent or received without re-arbitration. A full AHB
implementation that supported interruptible transactions with long bursts and retry mechanisms was
developed. Its retry mechanism enabled a target to reject a transaction with a request for it to be
started again. The mechanisms for bursts and interruptible transactions were similar in how they
extended the baseline protocol and its implementation. Overall, the complexities arising from
supporting a complex set of behaviours became undesirable and unnecessary as SoC and VLSI
technology advanced. The preferable way to attain high performance is always to use split port
transactions and, optionally, to use simpler MSOC1-like protocols for lower-performance 1/O
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subsystems where appropriate. A real-world simple bus example is the AMBA peripheral bus (APB)
standard defined by Arm. Overall, reciprocally degrading protocols are not suitable for modern SoCs
in which net pipelining and registering are needed to traverse any distance over the chip.

The Standard Synchronous Handshake

The four-phase handshake, as described above, is suitable for asynchronous interfaces. On the other
hand, a very common paradigm for synchronous flow control of a simplex bus is to have a handshake
net in each direction with bus data being qualified as valid on any positive clock edge where both
handshake nets are asserted. This protocol is called the standard synchronous handshake. A simplex
bus is unidirectional: all data lines go in the same direction. The handshake nets are typically called
‘valid’ and ‘ready’, with valid being in the direction from the initiator to the target and ready in the
opposite direction. For simplex interfaces, the data source is nominally denoted the initiator. This
paradigm forms the essence of the LocalLink protocol from Xilinx and is used in many other
synchronous protocols, such as for each channel of the AXI protocol (Section 3.1.5). Timing diagrams
are shown in Figure 3.5. The interface nets for an 8-bit transmit-side LocalLink port are:

input clk;
output [7:0] data; // The data word - here just a byte but any size is possible
output src_rdy_n; // This is the “valid' signal

input dst_rdy_n; // The reverse-direction “ready' signal
output sof_n; // Start of frame
output eof_n; // End of frame

ok /S S S\ ok [\ S\ L
src_rdy_n | src_rdy_n |
dst_rdy_n dst_rdy_n A /
data Jjf{ D0 f D1 } D2 } D3 Y D4 YK data J)if{ D0 [} D1 [ D2 f D3 D4 N
sof_n i\ Ve sof_n J{if\ Vi
eof_n lXK eof_n M

Figure 3.5 Timing diagrams for the synchronous LocalLink protocol. Left: Back-to-back transfer of words because the destination is always ready. Right:
Pauses to match the acceptance rate of the destination. Note that all control signals are active low (denoted with the _n RTL suffix) in LocalLink

As well as word-level handshake signals, LocalLink defines start-of-frame and end-of-frame signals.
These provide a packet delineation layer that is ‘above’ the word-level protocol in that the framing
nets are qualified by the conjunction of ready and valid, alongside the data nets. Having both start and
end frame delimiters is technically redundant, as discussed in Section 7.5, but can simplify arbitration
circuits, for instance, in a multiplexor that should not switch between sources mid-frame. An ESL
model for LocalLink is presented in Section 5.4.9.

A feature of the standard synchronous handshake is that both sides can freely assert and de-assert
their handshake net at will. Sometimes, in an implementation, one side will wait for the other side to
assert its handshake net. Such waiting should be avoided where possible since it adds to the delay. Itis
very bad if both sides wait in this way, either synchronously or combinationally, since we have an
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instant deadlock. Any instance of this communication paradigm must eliminate potential deadlock
scenarios by specifying permitted and illegal dependencies.

Note, adding a pipeline stage to the standard synchronous handshake is not a matter of just putting a
broadside register across all of the nets: the handshake nets travel in both directions, so re-timing one
or both will disrupt their points of conjunction. As described in Section 3.4.4, this is one reason to use
credit-based flow control instead.

Multiple Outstanding Transaction Protocols

To overcome the round-trip latency arising from the pipeline stages, protocols that can keep multiple
transactions in flight are needed. These generally use multiphase transactions in which the request
and response phases are conveyed over different channels that together form a bus port. A
multiphase transaction (aka split transaction) has a temporal separation between the issuing of the
command and the receipt of the result. Multiple outstanding transactions are then possible and arise
if further commands are issued before the results are received. Likewise, interconnect components
are free to operate in a streaming pipelined mode, as they can handle the next transaction before the
current transaction is complete.

This shift in bus protocol design went hand-in-hand with a related shift in how bus arbitration was
performed (Section 4.2.1). The principal interconnect definition now relates to the port on the IP
block. Bus arbitration signals are no longer defined as part of the port and the system integrator is
given complete freedom over the actual bus topology. Hence, an IP block can be connected to a NoC
or a simple bus without (substantially) changing its interface.

If multiple outstanding transactions are supported, the option arises for responses to be received out
of order. We consider this in Section 3.1.4, but first, we look at the BVCI protocol, which does not
support out-of-order responses. The BVCI protocol, defined as part of the Open Core Connect (OCP)
standard [3], was a popular alternative to the AHB protocol because it supports multiple outstanding
transactions and does not tie up interconnect resources for the duration of a transaction.

BVCI has separate command and response channels and each channel uses an instance of the
standard synchronous handshake. As well as being amenable to larger delays over the interconnect, a
multiphase protocol can tolerate varying delays, as arise when crossing CDs (Section 3.7.3).
Older-style single-channel protocols, in which the targets had to respond within a prescribed number
of clock cycles, cannot be used in these situations.

The standard synchronous handshake in each channel guards all of the other nets in that channel.
Data are transferred on any positive edge of the clock where both are asserted. If a block is both an
initiator and a target, such as the DMA controller example from Section 2.7.5, then there are two
complete instances of the port in an IP block. However, BVCI requests and responses must be
preserved in their respective order at any given port, whether that is an initiator or a target.
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For BVCI core nets (Figure 3.6):
= AllIP blocks can support this interface.
= There are separate request and response channels.

= Dataare valid if there is an overlap of req and ack.

The temporal decoupling of directions allows pipeline delays for crossing switch fabrics or crossing
CDs.

Sideband signals, such as interrupts, errors and resets, vary per block.

Two complete instances of the port are needed if the block is both an initiator and a target.

—— cmdval
l—— cmdack
— cmd[2:0]

Command
> addr[31:0] Command
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Figure 3.6 BVCI core nets. Arrows indicate signal directions on the initiator. All of these are reversed for the target
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Figure 3.7 BVCI protocol: Command phase timing diagram

BVCI supports burst transactions, in which multiple consecutive reads or writes are performed as a
single transaction with subsequent addresses being treated as offsets from the first address. Figure
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3.7 shows a write transaction where three words are stored. The implied addresses may wrap modulo
some pre-agreed basis, such as the cache line size. This allows a complete cache line to be retrieved,
but with the first-needed offset being served first. Because the standard synchronous handshake
allows back-to-back transactions without wasting clock cycles, there is no protocol-level performance
advantage to supporting a burst facility with this bus structure. However, target devices, especially
DRAM subsystems (Section 4.5), are highly optimised for burst operations. Hence, a burst must be
maintained as an ordered sequence over the interconnect.

Figure 3.8 shows aresponse to a read request that was also for three words.

respack [ \

rdata

rspeop

Figure 3.8 BVCl protocol: Response phase timing diagram. Operations are qualified with the conjunction of reqand ack. Response and acknowledge cycles
maintain their respective ordering. Bursts are common. Successive addressing may be implied

3.1.4 Ordered and Unordered Interconnects

Some initiators, particularly out-of-order CPU cores (Section 2.2) and massively parallel accelerators
(Section 6.4), issue multiple outstanding reads and can do useful work as soon as any of these are
serviced. Some targets, particularly DRAM, can perform better by servicing requests out of order.
Some bus fabrics, especially those with multiple paths, can perform better if they are not constrained
to deliver messages in order. Thus, it is clear that an interconnect that supports an out-of-order
service is useful. However, there are many occasions when ordering must be controlled so that
sequential consistency is preserved (Section 4.5).

Importantly, if we multiplex a pair of in-order busses onto a common bus, yet tag all of the traffic from
each bus on the common bus according to its in-order initiator, we have a tagged out-of-order bus.
Thisis illustrated in Figure 3.9. A transaction tag is a positive integer that associates either a
command with a response or a group of consecutive commands with a group of consecutive responses
in the same order. The semantics are that for any given tag, the requests and replies must be kept in
order. The devices on the left may be separate initiator blocks, like processors and DMA controllers,
they may be different load/store stations (Section 2.2) on acommon IP block or, in theory, they may be
any mix. For the targets on the right, there is no difference between demultiplexing to separate
in-order targets and using a single target that understands tags.
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Figure 3.9 Out-of-order bus formed from a pair of in-order busses with added tags (blue)

The tag size must be large enough to distinguish between different initiators that are multiplexed
together and also to support the maximum number of differently numbered outstanding transactions
generated by an initiator. For an interconnect that maintains order within a tag value, any number of
transactions with a given number can be safely outstanding. The simplest management technique is
for each individual source to generate tags with a width sufficient to enumerate its number of
load/store stations and for the command tag width to be extended at each multiplexing point by
concatenating the source port number with the source’s tag. This is illustrated in Figure 3.10. In
demultiplexing stages, the tag width may be unchanged, with an end point preserving the widest form
of the tag to send back to the originator. The reverse approach provides simple demultiplexing of
responses back to the appropriate source. A tag will then never get reused while it is in use because
each originating load/store station has a unique encoding and such a station will not issue a new
command while it has a request outstanding.

C ] Tag at point A 3 s2 sl sO
A
|:| |:| |:| Tag at point B s3 s2 sl sO

Initiator with 16 load/store stations
(requires four tag bits) # Tag at point C yl yO0 s3 s2 s1 sO

Figure 3.10 Augmenting the tag width through successive multiplexing stages

The tag mechanism just described is sufficient to correlate results to replies over an out-of-order bus.
However, to preserve sequential consistency (Section 4.5) between, say, separate load/store stations
on a CPU, which would have their own IDs, a memory fence mechanism is also needed. With so-called
weak memory ordering models, the physical memory operates deterministically, but the
interconnect or memory controller allows messages to overtake each other. Fences, also known as
barriers, preserve RaW and WaW orderings: no transaction is allowed to overtake others in a way
that would make it jump over a fence in the time domain. A programmer must insert fences in their
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software to sequence requests correctly to different addresses, as illustrated in Figure 4.17. Ina
variant of the OCP/BVCI bus, tag numbers were used in a different way from AXI: a fence was implied
when an initiator increased a tag number.

3.1.5 AMBA AXI Interconnect

The first Advanced eXtensible Interface (AXI) standard was defined by Arm in 2003. This marked a
move away from a conventional bus by defining the interface to a compatible IP block. It uses
multiphase transactions and hence, enables an arbitrary number of clock cycles to be consumed as
traffic moves across the interconnect. The standard also has many other freedoms. For example, the
data bus width can change inside the interconnect (using a resizer Section 3.6) and the clock
frequency can vary, for either a harmonic or an asynchronous clock (Section 3.7.1).

As shown in Figure 3.11, one AXI port has five separate channels. Each channel has its own standard
synchronous handshaking using a contra-directional READY/VALID pair with all the other nets
running in the VALID direction and qualified by the conjunction of ready and valid on a clock edge.

BVCI has two independent channels, which is the minimum required for multiple in-flight
transactions. The number is increased in AXI by first completely separating the read and write
transactions into independent channel groups and second, by splitting the write group further using
separate address and data channels. Using separate channels for reads and writes not only increases
the bandwidth owing to the spatial reuse principle (Section 3.2), it also tends to reduce the complexity
of the implementation of the logic overall, but at the expense of wiring area. The interface is simple
because the data are moving in only one direction in each of the channels. No additional energy is
needed by the additional wiring area (principally two address busses instead of one), indeed the
number of transitions on the split address busses can typically be lower than on a shared bus owing to
the spatial locality of access.

The complete decoupling of the read and write aspects immediately raises the prospect of
uncontrolled RaW and WaR hazards and related sequential consistency problems (Section 4.5). These
hazards arise if the most recent data are not read back after a write has nominally occurred. The AXI
protocol lays down no ordering requirements between read and write transactions over the separate
channels. Same-address RaW/WaW hazards are generally handled in hardware, either by detecting
and stalling a request that is to the same address as an outstanding write or by serving it from the
write queue.

To maintain sequential consistency, fences have been deprecated within the AXI specification because
fences are more efficiently handled within the initiator. Supporting fences within the interconnect
requires a significant amount of state storage and goes against modern interconnect design
techniques in which components are designed to be simple so that they are easy to verify and can run
at a high frequency. Hence, for AXI systems, an initiator must wait for all outstanding responses to
come back before issuing a transaction on any of its load/store ports, which needs to be after a fence.
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Figure 3.11 The baseline port structure for an A32D32 AXI standard initiator showing the five temporally floating channels, two for reads and three for
writes. Parity bits may be present on any of the busses. Writing an address and writing data operate close to lockstep for single-word writes, but are split to
support multi-word bursts. Signal directions are reversed for a target

The AMBA AXI and ACE specification includes major revisions (3, 4 and 5) and interface variants, e.g.
AXIl4-Lite and ACE5-Lite, as summarised in Table 3.1. Each row in the table defines multiple possible
forms due to further parametrisation being used to define the address, data, tag and other bit widths.
AXI can be used with a tag width (Section 3.1.4) of any size. A size of zero bits is allowed, which gives
an untagged port. The AXI3 and AXI4 protocols are very similar. Both support burst transfers.
However, for both reads and writes, a burst transaction sends only one address to accompany
multiple data words, with the addresses incrementing according to one of several predefined
patterns. AX14 extended the maximum number of data beats in a burst transaction from 16 to 256. A
beat is a clock cycle during which a data word is transferred. It also added a QoS dimension

(Section 4.3) and a richer set of commands and protection levels. The Lite variant of AX14 is cut down,
as it has no tags or byte lanes and a burst size always of one beat. AXI5-Lite bridges the gap between
AXI5 and AXI4-Lite by permitting response reordering but with single-beat transactions.
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Table 3.1 Major predefined AMBA AXI bus standards and profiles. Within each profile, there can be variations in address, data, tag and other bus widths per
instance

Profile Channels Other nets Description
AXI3 AR+R, AW+W+B Tag ID, WLanes Bursts 1-16 beats
AXl4 AR+R, AW+W+B Tag ID, WLanes, QoS Bursts 1-256 beats
AXl4-Lite AR+R, AW+W+B No burst transfers. No byte lanes
AXI4-Stream W Simplex. No addressing. Unrestricted length
AXI ACE All of AX14 AC+CR+CD Cache coherency extensions
ACE5-Lite All of AX14 AC+CR+CD Single beat. Out-of-order responses

AXI Coherency Extensions (ACE)

The AXI Coherency Extensions (ACE) protocol extends AXI with three further channels to support
cache consistency. It defines the messages required on these channels to keep multiple caches
consistent with each other, using MESI-like protocols (Section 2.4.1). The new channels are:

1. AC: The snoop address channel is an input to a cached master that provides the address and
associated control information for snoop transactions. This supports operations such as reading,
cleaning or invalidating lines. If the snoop hits a line in the cache, the line may have to change state.
The type of snoop transaction informs the cache which states it is permitted to change to.

2. CR: The snoop response channel is an output channel from a cached master that provides a
response to a snoop transaction. Every snoop transaction has a single response associated with it.
The snoop response indicates whether an associated data transfer is expected on the CD channel.

3. CD: The snoop data channel is an optional output channel that passes snoop data out from a
master. Typically, this occurs for a read or clean snoop transaction when the master being snooped
has a copy of the data available to return.

With ACE, the AXI bus has evolved into a total of eight channels. As will be discussed in Section 3.4,
this is a bit cumbersome for a NoC. A protocol like AMBA CHI (Section 3.4.5) is more appropriate,
since a single ‘link’ carries all the relevant information between one interconnected component and
the next. Having many channels is not necessarily bad (especially in low-leakage technology
Section 4.6.3): many channels means more nets, which means more bandwidth. Provided these nets
see reasonable utilisation, bridge or hub-based AXI remains a sensible interconnect system for
medium-complexity systems.

3.1.6 Directory-based Coherence

The snooping approach to cache consistency was presented in Section 2.4.1. For a single level of
caching, snooping suffers from a quadratic growth in energy as the number of initiators (cores) is
increased because on each cache miss, all the other caches must be checked to see if they contain the
line in question. Moreover, the traffic load on a broadcast snoop bus grows linearly and will eventually
saturate. One solution is to use multi-level caches and another is to use a directory-based system.
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Having multiple levels of cache, either with successively higher density or lower performance, is good
in terms of energy use, as is well known and demonstrated in Section 6.6.1. In addition, it also helps
with saturation of the snoop bus. Having caches arranged in an inclusive cache tree is also good. The
root of the tree is the main memory. It is accessed by some subsystems, each with a local cache and
with snooping used between these caches. However, the structure repeats inside each subsystem
with the snooping being localised to each subsystem. Nesting this structure generates the tree. Every
cacheisinclusive, so that if a line is present, it is also present in every other cache on the path to the
root. Suppose that all the caches have a good hit rate of 95 per cent and a front-to-back clock ratio

of 2to 1 and that the bus width increases with line size. In this case, they will have a transaction rate
of 10 to 1 between their front and back sides. Thus, having 4 or 8 subsystems in a snoop group is quite
feasible.

Although cache trees scale quite well in terms of coherency and main data bandwidth, their latency
increases with the tree depth. The rapid exchange of cache lines between initiators that are along
way apart in the tree is slow. This use case can occur, dependant on operating system policy and
software structure. The number of feasible RAM densities and clock frequencies in a silicon process is
typically at most three, so having more than three levels of caching to span the gap is not necessary.
However, the memory capacity and bandwidth must be continually increased due to the ITRS
roadmap and market pressure. With the end of Dennard scaling (Section 8.2), the processor clock
frequency is no longer the driving force, so that the number of cores on a SoC has had to increase.
Having more cores motivates a wider cache tree. However, using only three or four levels of cache
tree requires a wider fanning out at each level, which is not possible since a bus wider than a cache line
does not help, and hence, system growth is limited.

Snooping-based coherency can be extended with a snoop filter [4]. A snoop filter block reduces the
amount of snoop traffic by not forwarding consistency messages that are clearly redundant. The filter
can operate in an approximate manner, provided that it does not remove essential messages. Various
forms of approximation are possible, including those based on memory addresses or replicated data
structures that are not necessarily up-to-date. In general, different cores can have widely disjoint
memory footprints, which can be distinguished adequately just by looking at a few bits of the physical
address. Combining several different bit fields or hashes from the physical address gives the Bloom
filter an advantage [5]. Like a set-associative filter, a Bloom filter overcomes the birthday paradox
(Section 2.4) by using a number of parallel hash functions, so that the chances of an entry aliasing with
another under all the functions is reasonably low.

The main alternative approach is to use multiple independent caches under directory-based
coherence. The memory map is hashed to some directory servers using bit-field masking. The MOESI
status and relevant cache list for a cache line are stored in its directory server. This approach is ideal
for NoC-based multiprocessor systems. Cache misses are served by sending an inquiry to the
appropriate directory. For a simple read, the server can send its reply to the relevant cache, which can
then forward on the data to the reader, minimising latency. Every situation requires a bespoke set of
messages to be exchanged, but these are relatively straightforward to implement. The internal data
structure of a directory needs to be designed carefully to handle cases where a large number of
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caches hold the same line. Solutions to this problem were presented in the seminal paper ‘An
economical solution to the cache coherence problem’ [6].

One optionis to make an approximate directory. For example, instead of keeping a list of all the caches
that hold a line, the directory records one cache, which has the line, and a flag, which indicates
whether the line is also in another cache somewhere. If the flagis set, then all caches would need to be
snooped. This can be an efficient implementation in a common use case where most lines reside in
only one processor’s cache at a time. However, directories rely on caches indicating when they
allocate and evict lines, whereas with snooping, a clean line can be silently evicted. So, directories
suffer from an overhead in signalling these events.

With the move from defining complete bus standards to just standardising the interconnect port on
an IP block, a wide variety of innovative hybrids of snooping and directory-based approaches can be
implemented without upsetting other aspects of the system design. Open-standard protocols, like
ACE and CHI, enable innovations to be made in cache structures and offer a better degree of
future-proofing.

3.1.7 Further Bus Operations

The list of bus operations in Section 3.1 included much more than just simple single-word and burst
read and write transactions. Today, the vocabulary of operations has expanded, with an opcode space
of 32 possible commands becoming commonplace.

Load-linked and Store-conditional Instructions

Older generation atomic instructions, such as test-and-set or compare-and-swap, involve both a read
and a write operation. If implemented as separate bus transactions, to avoid pre-emption, the
relevant memory system had to be locked for the duration. This restricted the concurrency and could
leave a memory bank permanently locked under certain transient failures.

A new approach to providing exclusion between load and store instructions to the same word is
provided by the load-linked (LL) and store-conditional (SC) instruction pair. These can be equivalently
implemented in the cache system, the TLB or the memory system. The semantics for a memory-based
implementation are that an initiator (CPU core) performs an LL on a memory address. As with a
normal load, this retrieves the memory contents at that location, but as a side effect, it also stores the
initiator identifier (core number) and the address, rounded to some number of bytes, in some hidden
register pair associated with the memory region or bank concerned. The same core then performs an
SCto the same address, perhaps attempting to acquire a mutex by placing a one where a zero was
found (the test-and-set operation). However, hardware matching makes sure the SC succeeds only if
the initiator’s identifier and the same address remain held in the hidden pair. When Sc fails, no write is
made and the initiator is given an appropriate return code. In the Arm architecture, the success or fail
return code is loaded into an extra register specified as an operand to the strex instruction.

If any other initiator attempts any memory access on the same address, the first core’s ID is removed
and replaced with a null value. Similarly, if any other initiator attempts an LL instruction on the region
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of addresses that shares the hidden register pair, the first core’s ID is overwritten by the new core’s ID.
Either way, the LL/SC sequence fails for the first core. This is called optimistic concurrency control. It
requires clients to retry on failure. Another possible problem is periods of livelock, during which two
or more clients compete for the same mutex, each causing another to fail and retry. In a
well-engineered system, failure should be rare and cause minimal overhead.

Rather than being implemented in the memory as described, the LL/SC mechanisms can be efficiently
implemented in the data cache or address TLB where present (but not in microcontrollers for
instance). A data cache implementation of LL loads a cache line as usual, but the line is placed in the
MOESI ‘exclusive’ state (Section 2.4.1). The core ID may be intrinsic to the physical cache slot or may
already be held for a shared L2 cache as part of the exclusive tagging. Likewise, the effective address
is in the cache tag, save for the last few bits, which will alias. Existing coherency mechanisms, such as
snoop requests, can then be used to erase the exclusive state should another core attempt to access
the same memory location. Using C structs with padding, or whatever, the programmer should pad
out mutex and semaphore variables so that they do not alias by sharing a cache line. Sharing would
lead to unnecessary Sc failures.

Atomic Interconnect Effects

LL/SC is one option for atomic operations. Concurrency control is tricky because an operation is
performed at the initiator but needs to have the semantics of an atomic operation at the target. The
obvious alternative is to implement the atomic operation close to the actual storage. This is called
near-data processing (NDP), and often has the advantage that a computation can be performed with
less data movement, which is the greatest energy user in modern VLSI.

Many atomic operations have hazard-free and commutable effects. By ‘effects’, we mean side effects:
i.e. imperative mutations of the surrounding state. By ‘hazard-free’ and ‘commutable’, we mean that
the order of application is unimportant. For an effect to be commutable, the operator does not need
to be commutative since there is no loss of control of operand order. Instead, the operator needs to be
associative and cumulative. Standard far atomic operations include X0OR, MAX, MIN, ADD, BIT-CLR and
BIT-SET. Each of these mutates a location held in memory using an immediate operand. Increment,
decrement and subtract can all be implemented via the generic ADD command. There can be both
signed and unsigned variants of MAX and MIN. The final result from most sequences of these commands
is the same, regardless of the order in which the sequence is applied. However, for instance, BIT-SET
and ADD cannot be permuted in a sequence, so effects reside in classes within which their order is
unimportant. Moreover, test-and-set (or compare-and-swap) operations, despite being atomic, are
not commutable: they not only cause side effects, but they also return a result that alters the caller’s
behaviour.

A simple yet useful atomic operation is a multi-word read or write. If write data uses a separate
channel from the write command and address, as is the case with AXl and CHI, a store zero or
multi-word memory clear operation can be usefully implemented. This does not need an operation on
the write data channel.
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Erasure Data Channels and Poison

Within a SoC, data can be corrupted by a variety of effects, such as nearby electric sparks or atomic
radiation, which can cause a single-event upset (SEU) (Section 8.2.1). This is typically detected when a
parity or an error-correcting code (ECC) check fails to tally properly. An automatic repeat request
(ARQ) is typically used when errors are detected by an on-chip interconnect. This results in the
initiator reattempting the transaction. For large burst transfers or streaming channels, either the
latency overhead from aretry is intolerable or retries are infeasible. Forward error correction and
error concealment are then the only possible options. ARQ is also occasionally known as backward
error correction.

With forward error correction (FEC), check digits are added to the data such that if a small amount of
datais corrupt, any errors can be found and corrected from the redundant information. One of the
most common FEC techniques is Reed-Solomon coding. The additional check digits are very easy to
generate in hardware using shift registers and XOR gates. Checking and correcting are also relatively
easy for an erasure channel. In an erasure channel, the location of corrupt data are marked. These
parts of the data are treated simply as being missing, instead of being corrupt. One technique for
marking erased data uses poison bits. For instance, in the AXI standard, for each 64 bits of a data bus,
an additional poison bit may be conveyed to mark a data erasure. Clearly, it is better to check the data
near the final receiver than to check it close to the source and then convey the poison flags a long
distance, as the poison flags may become corrupt.

If data have errors to the point where these cannot be corrected or if no FEC check information is
present, error concealment is used instead. This is widely used for audio and video data.
Concealment techniques typically repeat the last accurately conveyed data or fall back to a
lower-resolution copy that was also conveyed in case of error. However, concealment is
application-specific and should not be embodied in general-purpose hardware.

Persistent Operations

When a non-volatile store is used for secondary storage, such as SSD (Section 2.6.1

and Section 2.6.8), memory transfers are made by a specific device driver as part of the operating
system’s file system. However, increasingly, especially in smartphones and embedded systems,
non-volatile memory is used as the primary store and operated on, via the cache hierarchy, by the
everyday instruction fetch and load/store operations. Each memory location has a point in the
hierarchy at which data can be relied upon to be persistent when power is removed. This is known as
the point of persistence (PoP). A write instruction that is supposed to update a persistent store will
often be buffered (Section 2.4). This improves performance in general and also reduces write wear on
memories that have a limited write lifetime (Section 2.6.8). A persistent write transaction is a write
that flushes itself to the PoP. It is similar to the sync system call in an operating system, which results
in software writing out the buffer cache to disk. In contrast, a persistent write transaction operates on
the primary store and the implementation is in hardware: write buffers and dirty cache lines are
propagated to their persistent store.
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Cache Maintenance Operations

Normally, the caches present in a memory system are designed to offer transparent performance
gains without programmers or the software being aware. An interconnect carries various forms of
cache maintenance operation (CMO). These are mostly generated automatically by hardware, such
as an eviction message between caches when a line needs to be moved to the exclusive state.
However, others are generated explicitly by software. For instance, instruction cache coherence is not
generally implemented in hardware, so with self-modifying code, such as when a dynamically linked
library is loaded by the operating system loader, an instruction cache flush CMO must be issued.

A remote cache write or cache stash enables an initiator to update the local cache of another
component [7]. This is essentially a store instruction, issued by one core, that behaves as though it was
issued by another. In simple terms, it does not matter which core issues a store, given that it is issued
at least somewhere, since ultimately the target address will be updated accordingly. However, due to
write buffering, as discussed above, a store is often not written out to its ultimate destination,
especially if another store writes fresher data before the writeback occurs. In many inter-core
communication patterns, the cache would behave much better if the core that is to receive a message
had stored it in the first place. This is what a remote cache write enables. The data that the receiver
wants to examine is already in its cache. The receiver remains free to overwrite it or ignore it, or
anything in between. Often, no main memory traffic is needed to support the complete transaction.

Alternatively Translated Operations

A simple SoC may have virtual address spaces for each core and one homogeneous physical address
space for everything else. In more complex designs, the MMU(s) may be within the interconnect and
multiple address spaces may share the same physical bus segment, especially in a NoC. A common
requirement is for a core to issue a load or store instruction that is not translated or which is
translated with a mapping that is not the current mapping of that core. A common example is a
user-space linked list in an operating system kernel or a smart DMA engine. Hence, an interconnect
must support various alternatively translated transactions.

It is common for a system to employ distributed MMUs using a common set of translations. This
enables a task to run seamlessly on any one of a set of processors. MMUs cache translations in their
local TLBs, fetching a translation from memory only if it is not present in their TLB. If achange to a
page table must be applied to all MMUs, then these TLB entries must be invalidated.

Peripheral Probe Operations

The job of allocating programmed-1/O (P10) base addresses (Section 1.1.3) for each peripheral is not
very difficult to automate for a single SoC. However, for a family of similar products, which may have
evolved over decades, and for multiple release of the operating system, static management of the
memory map is cumbersome. For the cost of very little logic, it is possible to support dynamic device
discovery so that a software build can find the 1/O devices present on the platform it hits. A variety of
techniques is possible, including putting a device data sheet in a ROM at a well-known location.
However, this cannot easily cope with pluggable upgrades. If a peripheral’s internal register space
starts with a few read-only locations, these can easily contain the model and version number of that IP
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block. They might even contain a URL for downloading the device driver. This solves the peripheral
identification problem. However, a boot-time prober or hardware abstraction layer (HAL) needs a
lightweight presence-detect read operation so that it can attempt to read the identifying information
from likely places. Instead of a bus-error interrupt being raised in response to reading from an
undecoded address space, a probe read instruction will return a well-known value, such as
OxDEADBEEF.

NoC Maintenance Operations

Most NoC designs require a certain level of management by a control processor. Although PIO to
dedicated register files is always the preferred interface for low-level management and configuration,
some configuration may be required before everyday P1O can operate. Operations may be needed to
establish routing maps (Section 3.4.1) and flow control credit may need to be distributed manually
(Section 3.4.4). Null transactions that have no response and null responses that have no command are
also commonly needed. These can be used to return one spare credit to a destination node.

3.2 Basic Interconnect Topologies

In anideal SoC design flow, the topology of the interconnect should be one of the last high-level
design decisions. The design should be automated or semi-automated from a traffic flow matrix
collected from high-level models. Once the topology is chosen, a system interconnect generator can
create all of the RTL, which contains all the component IP blocks and fabric IP blocks (such as bus
adaptors and bus bridges) (Section 6.8.2). In this section, we review basic topologies that use
arbitrated busses and bus bridges. NoC topologies will be considered in Section 3.5.

The bus in early microcomputers (Section 1.1.3) was a true bus in the sense that data could get on and
off at multiple places. SoCs do not use tri-states, but, as mentioned earlier, we still use the term ‘bus’
to describe the point-to-point connections used today between IP blocks. Our MSOC1 protocol
(Figure 1.5) is more practical because there are separate read and write data busses.

One feature that largely remains from the older definition is a lack of spatial reuse. Spatial reuse
occurs when different busses are simultaneously active with different transactions. For instance, a
traditional 32-bit data bus with a clock frequency of 100 MHz can convey 400 MB/s. Owing to the
original tri-state nature, such a bus is half-duplex, meaning that reading and writing cannot happen
simultaneously. The total read and write bandwidth is limited to 400 MB/s. Today’s SoC busses are
largely full-duplex, with separate nets carrying the read and write data, so the throughput would
approach 800 MB/s if there were an even mix of loads and stores. (In reality, the store rate might
typically be 25 per cent or less of all transactions.) In all cases, as more devices are attached to a bus,
sharing reduces the average amount of bandwidth available per device. This is in contrast to the
switched networks we present later (Section 3.2.3), which enable genuine spatial reuse of the data
bus segments. With NoCs (Section 3.5), the available bandwidth increases since more of the
interconnect is deployed.

In contrast to a traditional PCB-level bus, interrupt signals do not need to be considered alongside bus
topologies. In a small to medium-sized SoC, they can just be dedicated wires running from device to
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device. However, like other parts of a bus configuration, they need representation in higher-level
descriptive files. Moreover, the allocation and naming of interrupts need to be managed in the same
way as the data resources in a memory space.

As systems become larger with more processors, the sheer number of interrupt lines becomes
difficult to route across a large SoC. Also, off-chip processors may require interrupts to be
communicated between chips, although signal pins are at a premium. For these applications,
message-signalled interrupts (MSI) can be used. In MSI, interrupts are communicated using packets
similar to data. In a general NoC implementation, they might use the same interconnect as other
traffic, but care must be taken to meet the system’s latency requirements for an interrupt.

We will, first, review the area, energy, throughput and latency for various simple interconnect
topologies.

3.2.1 Simple Bus with One Initiator

The most simple interconnect topology uses just one bus. Figure 3.12 shows such a bus with one
initiator and three targets. The initiator does not need to arbitrate for the bus since it has no
competitors. Bus operations are just reads or writes of single 32-bit words. Unbuffered wiring can
potentially serve for the write and address busses/channels, whereas multiplexers are needed for
read data and other response codes. Following the physical constraints outlined in Section 3.1.1,
buffering is needed in all directions for busses that go a long way over the chip. The network
generator tool must instantiate multiplexers for the response data paths. As explained

in Section 1.1.4, tri-states are not used on a SoC: the multiplexers are fully active or, in some localised
cases, may use pass transistors (Section 8.5.1). In a practical setting, the bus capacity might be 32 bits
x 200 MHz = 6.4 Gb/s. This figure can be thought of as unity (i.e. one word per clock tick) in
comparison with other configurations that we will consider.

3.2.2 Shared Bus with Multiple Initiators

A single bus may have multiple initiators, so additional multiplexors route commands, addresses and
write data from the currently active initiator to drive the shared parts of the bus, as shown in

Figure 3.13. With multiple initiators, the bus may be busy when a new initiator wants to use it. This
requires arbitration between contending initiators, as discussed in Section 4.2.1. The maximum bus
throughput of unity is now shared amongst the potential initiators. If a device is both an initiator and a
target, such as device 2 in the figure, it has two complete sets of connections to the network.

When granted access to the bus, an initiator may perform multiple transactions before releasing it.
One motivation for this is to support atomic actions, as discussed in Section 3.1.7. The bus may or may
not support burst transactions or the burst size supported may be insufficient for the amount of data
that needs to be moved. As explained in Section 4.3.1, the real-time performance of the system can
fall if the bus is not shared sufficiently finely. A system-wide maximum bus holding time may be
specified to mitigate this.
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Figure 3.12 A basic SoC bus structure for the MSOC1 protocol. One initiator addresses three targets (high-level view and detailed wiring)

Initiator

Target
&
Initiator

Target

Target

| 821n8(

2 801neQ

€ 901neQg

$ 991n8Q

sng

Device 1

Initiator

Device 2

Initiator
Port

Bus
Arbiter

Control

WD

RD

ADDR

» ADDR

WD

Read Mux

Tlnitiator l' Mux
R Control
equests
>0 Decoder
o \O» Logic
ADDR
Wb Addr Mux
RD [« >0
N o
Wdata Mux
ADDR [ |
5®)
,o\e-
rdata
RD (=

Figure 3.13 Example where one of the targets is also an initiator (e.3. a DMA controller)

3.2.3 Bridged Bus Structures
Two busses can be joined by a bus bridge, which potentially allows them to operate independently if
traffic is not crossing. Essentially, bus operations received on one side of a bus bridge are reinitiated
on the other side. The bridge need not be symmetric: CDs, clock speeds, protocols and data widths
can differ on each side. However, in some circumstances, especially when bridging down to a slower
bus, there may be no initiator on one side, so that that side never actually operates independently and
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aunidirectional bridge is all that is needed. In a multi-socket system, bridges may interconnect busses
on different pieces of silicon.

Two busses potentially means twice the throughput (spatial reuse principle). However, when an
initiator on one bus requires access to a target on the other bus, the bridge will convey the
transaction. This transaction consumes bandwidth on both busses.

Figure 3.14 shows a system with three main busses and one lower-speed bus, all joined by bridges. To
make full use of the additional capacity from the multiple busses, there must be at least one main
initiator for each bus that uses it most of the time. Hence, knowledge of the expected traffic flow is
needed at design time. However, a low-speed bus might not have its own initiators, as it is just a
subordinate bus to the other busses. The slow bus may also use a lower-performance
lower-complexity protocol, such as the APB standard. The maximum throughput in such systems is
the sum of that of all the busses that have their own initiators. However, the throughput realised will
be lower if the bridges are used a lot, since a bridged cycle consumes bandwidth on both sides.
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Figure 3.14 A system design using three bridged busses. Each main bus has its own primary initiator (pink), which is typically a CPU, but the bus bridges
(green) also initiate transactions

There is a wide potential design space for a bus bridge, but the external connections, shown in

Figure 3.15, remain the same. A bus bridge may make address space translations using simple
arithmetic. Alternatively, logical functions may be applied to the address bus values. The SoC as a
whole might be defined with a unified global address space, but with non-uniform (i.e. different)
access times between various pairs of initiators and targets. This gives a non-uniform memory access
(NUMA\) architecture (Section 2.3). For debugging and testing, it is generally helpful to maintain a flat
address space and to implement paths that are not likely to be used in normal operation, even if there
is a separate debug bus (Section 4.7). However, for A32 systems (with an address bus width of 32 bits),
the address space may not be large enough to hold a flat address space. For secure systems, a flat
address space increases the attack space. A bus bridge might implement write posting using an
internal FIFO buffer. However, generally it must block when reading. As mentioned earlier,
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write posting is where the initiator does not wait for a successful response indication from a write
transaction. This reduces the amount of time that multiple busses are occupied in old busses. Split
busses, with separate command and response ports, do not suffer from this. For cache-coherent
buses, the bus bridge may carry coherency traffic or else consistency resolution may be left to the
system programmer.

A bus bridge with different bus parametrisations or bus standards on each side acts as a bus resizer or
protocol converter. A bridge with more than two target ports may be called a hub, but this term is
also used loosely for a demultiplexer with just one target port. By using multiphase protocols, a
demultiplexer for commands acts as a multiplexor for responses.
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Figure 3.15 Bidirectional bus bridge for the MSOC1 protocol. It has a pair of back-to-back simplex bridges. It could be a single IP block on a single chip, or
the two halves could be on different chips with a SERDES (Section 3.8) serial link between them

Figure 2.12 shows an abstract centralised hub labelled the bus fabric. This could represent a
multi-port bus bridge or a NoC. A crossbar switching element enables any input to be connected to
any output and for every input to be connected to an output at once, provided at most one input is
connected to any output. Figure 3.16 illustrates various circuit structures that achieve crossbar
switching. The number of inputs and the number outputs, N = 4. The left-hand panel shows a
time-division multiplexed (TDM) bus that must have a bandwidth of N times the input bandwidth by
using a faster clock. Instead of increasing the clock rate, the bit width can be increased by a factor of N.
This gives the central and right circuits, which are two ways of depicting the same circuit. In the centre
diagram, N2 basic crossbar elements are used. A basic crossbar element can either be in the bar state
(shown pink), in which signals are routed from top to bottom and left to right, or be in the cross state
(shown green), in which a horizontal signal is redirected to the vertical nets. In the right-hand panel, a
broadcaster at each input sends a copy to each output and a multiplexer selects one of the arriving
inputs. The broadcasters may be just passive wiring if noise margins can be satisfied (Section 2.6.3).
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Figure 3.16 Crossbar 4 x 4 connectivity implemented in three different ways: with a high-capacity TDM bus (left), crossbar elements (centre) and
multiplexors (right)

A crossbar does not suffer from fabric contention (defined in Section 4.2.1), but the limit of one input
connected to each output inevitably leads to output port contention. Analytically, the saturated
throughput per port for balanced random trafficis 1/e, but real SoC traffic patterns are never
balanced. We return to network dimensioning in Section 3.9 and Chapter 6.

The standard analysis for output port contention is given by

_1\N
Maximum throughput =1 - (%)

This is simply a binomial distribution applied to the probability that, for an output port, no input queue
has a packet at its head destined for it, given that all inputs have something at the head of their line.
Counter-intuitively, this gets progressively worse for larger crossbars. For one input, the throughput
evaluates to unity, which is not surprising. For two inputs, it is 0.75, which is obvious, since half the
time the two inputs will select the same output and the other output will be idle. For three inputs, it is
0.740 and for arbitrarily large switches, the limitis 1/e = 0.632.

3.3 Simple Packet-Switched Interconnect

As mentioned, protocols such as AXI are classed as circuit-switched. However, if we have different
channels for requests and responses and the messages are shorter than the time-of-flight along the
channel, the distinction between a circuit-switched bus and a packet-switched NoC becomes blurred.

Figure 3.17 shows the essential structure of a demultiplexer for a multiphase bus protocol along with
the remultiplexer necessarily required to route responses back to the appropriate initiator. It shows a
radix-2 component, but typically there will be several inputs, say N. Moreover, there may be M such
demultiplexers in an N x M bus fabric hub (multi-way bus bridge).

There are two main approaches for controlling the remultiplexor. In the tagged-bus approach
(Section 3.1.4), the tag width can be expanded (or introduced if not already present), so that the
transaction carries the reverse routing information with it. This is stripped off when used. Hence, this
is a form of source routing (Section 3.4.1), which is perversely introduced by the target of the
transaction and which has disappeared by the time the response gets back to the transaction source.
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Figure 3.17 Multiphase (split transaction) bus demultiplexor and remultiplexor for responses (left). Three of these structures could be used to implement the
2 x 3 bus fabric hub (right)

The other way, as shown, is to rely on the order of requests and responses being preserved and to
store the routing information in a local FIFO buffer. The depth of the FIFO buffer must be sufficient
for the number of outstanding transactions expected downstream of this point, but when the
requested channel is full, backpressure can be used to hold off further load.

3.3.1 Multi-access SoC and Inter-chip Interconnect

Multi-access techniques, as used in first-generation local-area networks (LANs), use only source
queuing. The lack of queues in the switching elements reduces hardware costs. Such structures are
sometimes used in SoCs or between SoCs for a high-performance interconnect. The two main
topologies are the ring and the folded bus. Ring media access protocols include register insertion,
slotted ring and token ring. The links of the network are a shared resource. These different protocols
moderate access to the resource, by making traffic wait at the initiator until it can be served. Hence,
no further logic is required to implement flow control for the interconnect. Messages are packetised
with a header that contains the destination address. Receivers see all traffic and selectively filter it
based on the address. Broadcast and multicast are also trivial to implement due to the underlying
broadcast nature of the medium.

The multi-access technique can level the delivered load, by limiting the maximum delivery rate at a
destination. Beyond that, fine resolution throttling of the bandwidth for a destination is possible using
avirtual channel (VC) overlay on the slot structure. For instance, a dynamic yet predictable mapping
of slots to VCs can be used as presented in Section 4.6.6 of [8]. Each receiver is permanently allocated
a particular VC and arrivals at the receiver are limited by the capacity of that VC, which was
established during the design of the mapping function.

Since each receiver is allocated a VC number, it needs to look only in slots that have that channel. The
mapping establishes the density of slots and hence, the maximum delivery rate to a receiver.
Transmitters must use the correct channel number for the addressed receiver. The mapping can be as
simple as alternately labelling slots odd and even, to provide two channels and get a 50 per cent
throttling of bandwidth. Alternatively, the mapping can be a carefully constructed many-to-one hash
function, based on labelling slots using a pseudorandom binary sequence (PRBS) (Section 3.8).
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Such multi-access techniques are ideal for applications where the destination has a guaranteed
throughput. However, if lossless operation is to be preserved, additional end-to-end flow control is
required if the response times of the receiver can vary. The network can carry a response indicating
whether a message was properly received, but traffic to a busy destination needs to be retried again
by the originator as there is no intermediate storage in the network. This means delivery latencies are
multiples of the round-trip time. This also requires considering the ordering if multiple transactions
arein progress.

A slotted ring has its sequential delay (the number of clock cycles to traverse it) formatted into a fixed
number of slots. Each may be full or empty. A transmitter waits for an empty slot and fills it. The
receiver may free up the slot or use it for a response to the transmitter. The pass-on-free rule, if used,
requires the transmitter to empty the slot and pass it on to the next potential transmitter, making
sharing fair. If the transmitter directly reuses the slot or the receiver reissues the response, other
access control protocols are needed [9]. The Knights’ Corner processor from Intel, and many
succeeding designs, notably used a pair of counterrotating slotted rings for cache consistency.

A register-insertion ring places its message in a shift register that it inserts into the ring to send the
message. When the message has rotated all the way around, it can be removed. A token ring passes a
specific non-data word around the ring. A transmitter that needs to send, holds the token and sends
its message instead, putting the token at the end of the message.

Ring networks are suited well to simple broadside pipeline register stages, as ring links do not require
low-level flow control due to the media access protocol. If it is known that it is rare for a destination to
be busy, instead of making the transmitter send again, a simple alternative is to stall the whole ring for
one or more clock cycles. Sadly, this can lead to a deadlock if the reason for the destination being busy
is not going to go away while the whole ring is stalled. A better multi-access network in this respect is

afolded bus.

3.3.2 Multi-access Folded Bus

Figure 3.18 shows two topologies for a folded-bus multi-access network. The basic behaviour is very
similar to that of the ring topology. The multi-access shared medium has a transmit region that feeds
into a receive region at the fold, with any amount of simple broadside registering being allowable in
each branch, except for the tree-form transmit region, which requires a backwards handshake net.
The switching elements forward traffic from either input that is not idle. In the linear form, the
elements typically give priority to existing traffic over new traffic from the local end point. In the tree
form, the elements may use round-robin arbitration. A higher priority will then be given to any
transmitting station that is closer to the root if an unbalanced tree is used.

Without hop-by-hop flow control along the transmitting half of the linear form, sources furthest from
the fold would effectively have priority, since they see less competition for bandwidth. Switching
elements are, by design, not allowed to buffer traffic and cannot stop it from arriving. The tree form,
however, typically uses backpressure, but the paths are logarithmic only in length and this path can
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Fold

Figure 3.18 Two folded busses that have similar component counts. For each, the number of switching elements grows linearly with the number of end
points (EP). The linear form (left) is suitable for multi-chip use, but the tree form (right) has lower latency. The receive half of the tree form often has a tree
structure running exactly parallel to the transmit half, but here it is shown flattened to almost a bus

tolerate some delay through synchronous logic, without the network losing performance overall. This
approach was used in the reliable Hubnet LAN [10]. It avoids excessive combinational path build-up.
Alternatively, fully registered FIFO stages can be added to break the paths (Section 6.3.4). For the
linear form, media access control, if needed, is typically achieved using request tokens piggybacked on
the forward traffic to establish a path for higher stations to instruct lower stations to defer sending.
This was the basis for the Dual-Queue/Dual-Bus LAN standard [11].

A folded bus has twice as much wiring as a simple ring, but the presence of the break enables any part
of the transmit half of the bus to be stalled without interrupting the delivery of traffic to the receiving
side. This eliminates a major form of deadlock, as discussed in Section 6.6.3.

3.4 Network-on-Chip

A network-on-chip (NoC) consists of end points, switching elements, domain-crossing elements and
bus resizers. These are interconnected by nets known as NoC links. The main forms are listed

in Section 3.6. If cache coherence and virtual memory (VM) are required, quite a large set of different
types of data have to be conveyed. As well as both logical and physical addressed data transactions,
cache coherency traffic and additional transactions are needed just to set up and manage the NoC.
Circuit-switched architectures use spatial isolation with separate busses for each of these traffic
types, whereas NoC designs multiplex all forms of data onto a few channel types. This means caches
and VM translation units (Section 2.2.1) can be freely connected to the NoC along with traditional IP
blocks, such as CPU cores and memory.

Above a certain minimum size, NoCs lead to scaling gains over circuit-switched busses. The principal
advantage of packetised communication is better utilisation of the physical channels while still
providing data isolation and QoS guarantees. VCs (Section 3.4.2) are commonly used, leading to even
better utilisation of the physical nets and an ability to handle disparate traffic requirements without
deadlock.
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In a complex SoC, quite often parts of the SoC will have their own local interconnect. Such a local
interconnect follows traditional design patterns and is not part of the NoC architecture. Protocol
adaptors are needed to map circuit-switched busses, such as AXI, on and off the NoC. This is a strict
requirement if IP blocks have AXI ports, but increasingly, IP blocks have native NoC ports that
conform to a standard such as AMBA CHI (Section 3.4.5).
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Figure 3.19 A radix-3 switching element for a NoC using a broadcast bus at 4 x the link bandwidth and credit-based flow control

Based on a broadcast bus implemented as a crossbar (left-hand structure in Figure 3.16), Figure 3.19
shows a simple switching element for a baseline NoC. The element is 3 x 3 and uses 128-bit flits on
32-bit busses. Aflit is a unit of flow control, where the 128 bits would be conveyed in 4 back-to-back
words on the 32-bit bus. (All the terms in this illustrative summary are defined elsewhere in this
section.) The element has an input buffer with three flits’ worth of input storage per port. Each output
port has 2-bit credit counters to hold the credit available (0-3) in the successive inputs. No VCs are
used in this simple example, but per VC output credit would be needed if VCs are used. The input
queues are organised as ring buffers with 2-bit in and out pointers. Wormhole routing is used
(Section 3.4.1), so that routing is locked until the last word of a flit is indicated with the D1ast signal.
The routing locks and arbitration logic are in the central block. Switching is performed with a 128-bit
bus that has four times the bandwidth of each input port, which might look as though it is more than
enough for full throughput. The bus width is sufficient for a whole flit to be transferred atomically.
However, the throughput will be degraded (under theoretical random traffic) by output port
contention to 0.704 x 4/3 = 0.938 of the full load, assuming an infinite output queue size. A finite
output buffer can reduce this slightly, but this is negligible compared with the intrinsic inaccuracy of
the random traffic destination assumption. (The illustrated output buffer has one word pending and
one word currently being serialised, so its capacity is one or two depending on how you count it.)

Figure 3.20 illustrates a 2-D unidirectional torus topology fabricated with radix-3 elements. This is
intrinsically deadlock free, since traffic can turn in only one direction (anticlockwise at bottom left).
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The input buffers that are directly connected to end points will likely be simplified in reality, with the
queue structures shared between the element and the end point.

Figure 3.20 Example of a NoC fabric using radix-3 switching in a unidirectional torus mesh

The aim of a NoC design is low latency. If the parallelism available in an application is limited, which is
often the case, the application performance degrades reciprocally as latency is increased. However,
pipeline stages are required to close timing for the longer links within the design (Section 8.12.16).
Hence, the links of a NoC must be designed to attain efficient re-timing stages. As explained

in Section 3.4.4, this leads to a preference for credit-based flow control instead of the standard
synchronous interface used in AXI. Different parts of a NoC have different traffic densities, and the
width of the most appropriate data bus may vary accordingly. Hence, resizers, which either increase
or decrease the width of a physical bus (aka channel), are needed at various points, perhaps
associated with CD and power domain (PD) crossing. There are a large number of feasible designs and
arrangements of the building blocks. These need to be connected and configured appropriately to
give a solution with the desired power, performance and area (PPA) (Section 5.6). NoC design
optimisationis discussed in Section 3.5 and Section 6.2.

3.4.1 NoC Routing and Switching

Conventional busses essentially route traffic based on an address. There is notionally one address
space associated with a bus (Section 1.1.1). The same address will denote the same device or location,
regardless of which bus master issues the request to that bus. However, the same address issued to
different busses may well have different meanings. At a higher level of system design, such reuse of
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the address space may increase the complexity of management and cause potential confusion during
debugging. The advice for A64 systems is to avoid such reuse, unless it is really needed for efficiency.

For aNoC, it may be unavoidable to have multiple active address spaces. Moreover, not all
transactions or transaction phases carry a conventional address. Address spaces can be virtual or
physical, and there can be considerable overlap in the addresses used in different address spaces.
Hence, for NoC routing, every destination on the NoC has its own network identifier (NoC ID). The
initiator of a transaction must have a way to select the target NoC ID. This can be hardwired or held in
alocal map implemented as a few PIO registers or a small RAM.

Routing is the process of deciding the path across the NoC that a transaction will take. Switching is
the process of physically conveying the transaction and its response over the NoC. Routing may be
performed in one of four main ways:

1. With static destination routing, the transaction carries its destination NoC ID. Each switching
element can apply a simple function, such as bit-field extraction, on the destination address, which
specifies which output link to use.

2. With dynamic destination routing, the transaction again carries its destination NoC ID, but
switching elements have greater freedom over route selection. For instance, a message going
north-east can sensibly be forwarded north or east at the next step. The choice is typically
determined by which output port is currently idle or is based on a maximal matching of input to
output ports for the next time slot.

3. With source routing, the route is explicitly put in the transaction by the source as a list of
intermediate nodes or output port numbers for an element. Each switching element then removes
an item from the node list and follows that item.

4. With virtual-circuit routing, a route is set up and stored in the switching elements. The transaction
carries a virtual circuit number or locally scoped routing tag, which is looked up at each switching
element and used to select the next step of the path. Although virtual-circuit routing is not
commonly used for on-chip networks, it is mentioned here to emphasise that it is not the same as a
VC, which is defined shortly.

If there is only one path between the source and the destination, the routing decision is moot. In
dynamic routing, there can be an ordering issue for legacy protocols in which order must be
preserved. Super-scalar architectures, however, exploit the additional performance available by
ignoring order and deploy specific mechanisms, such as memory fences, where necessary.

In reality, many current NoC designs are comparatively simple. They use only one address space and
use static routing based on bit-field extraction of the target address. This results in minimal hardware
complexity and is optimised well during logic synthesis (Section 8.3.8). Response routing is based on
similar direct decodes of the source NoC ID that was placed in the command by the initiating bridge.
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Although very wide busses are relatively common in modern VLSI, certain transactions require
multi-word transfers over a bus. These could be large payload reads and writes or any transaction
that crosses a narrow bus (e.g. of 32 bits or less). As a result, a phase of a transaction (request,
response, snoop, etc.) can quite often take multiple clock cycles to be delivered. A large transaction
will always be split up into multiple flow-control units known as flits. These are the atomic units of
exchange between switching elements. However, even one flit can contain more bits than the bus
width. By definition, a flit is delivered without pre-emption by another (on the same VC). A multi-word
flit is typically forwarded between switching elements using cut-through or wormhole routing.
Figure 3.21 (left) illustrates cut-through operation. Cut-through means that the head of a flit has
already left the element on the egress port before the tail has fully arrived. Alternatively, the
elements can be store-and-forward elements, meaning that the entire flit is received into an internal
buffer before its head emerges from the element. This results in a packet-switched network like the
Internet. Store-and-forwarding increases latency and buffer requirements, but suffers less from
deadlocks. A NoC design generally does not use store-and-forward elements but instead solves the
deadlock problem. Both types of routing experience a structural hazard in that two flits cannot share
the same link (without VCs) at once. Figure 3.21 (right) illustrates that link contention can lead to a
deadlock, as will be discussed shortly.

SE SE — | _| : o e L | 1 SB SE s —
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Figure 3.21 lllustration of cut-through routing on a 2-D mesh NoC (left), wormhole operation (centre) and potentially deadlocking routes (right). The thin
black lines are the NoC links, which are bidirectional. The thick coloured lines are the routes chosen for a packet. The white marks indicates the end of a
packet

Cut-through cannot apply for flits that are just one bus word in length, and a registered switching
element will intrinsically use store-and-forwarding. For longer flits, the routing information needs to
be at the start. With wormhole routing, as shown in Figure 3.21 (centre), the switching element loads
an active path register when the head of the flit is encountered. The value persists while the
remainder of the flit is forwarded. The path register is cleared at the end of the flit (shown with a
white marker). Hence, the routing is not pre-empted and the flit is never split. It is not necessary for
the unit of flow control to be the unit of wormhole routing. Another common design point is for the
wormbhole to last for the duration of a phase of a transaction.
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3.4.2 Virtual Channels

A virtual channel (VC) is a time-division multiplexed (TDM) slice of a physical channel or link. The
physical link might carry two to ten VCs. These normally share a resource using round-robin
arbitration (Section 4.2.1) rather than statically allocating slots, which would be too wasteful. To allow
demultiplexing, the word width can be extended with the VC number that is active. For a multi-word
flit, an additional field is added.

VCs, when used judiciously, help in improving performance and optimising wire utilisation. Different
VCs can be used to provide fine-grained sharing of the fabric (sub-transaction level). They commonly
support a differential QoS and can help to prevent deadlocks. VCs preserve isolation, both between
separate classes of traffic and between requests and responses. The isolation of requests from
responses also helps to avoid deadlocks, as explained in Section 3.4.3. However, the use of VCs, in
general, leads to an increased number of buffers, which, in turn, increases the silicon area and power
consumption. An inefficient VC assignment can lead to NoCs that are at least an order of magnitude
inferior in terms of PPA. Hence, an optimal allocation of VCs is crucial in NoC design and an important
part of NoC synthesis.

A crucial step when designing an interconnect is to assign VCs to traffic classes so that its PPA meets
the design objectives while also avoiding deadlocks. The VC assignment problem for a NoC is tightly
coupled with topology generation and routing. However, combining VC assignment with topology
generation further complicates an already complex problem, and it is difficult to solve both effectively.
Traditional methods for VC mapping usually involve a greedy algorithm or use a different VC for each
QoS level. These methods are inefficient. If we have to use a constructive design approach, which
cannot iterate (Section 6.2), it is better to perform VC assignment after topology generation[12, 13].
However, generating a topology without partitioning the traffic into VC classes usually resultsin a
NoC that has a suboptimal PPA, as both the silicon area and net count will be higher. The
co-dependent nature of these two NP-hard problems poses a major challenge in creating efficient
solutions for both of them, so, as with most aspects of design space exploration, an iterative
optimisation technique is applied (Section 6.2).

3.4.3 NoC Deadlocks

An interconnect can experience various forms of deadlock. A deadlock arises when a path with a
circular dependency is activated such that each participant is waiting for the next to do something.
Figure 3.22 shows one typical pattern that can arise with wormhole and cut-through routing. Thisis a
fabric deadlock since two (or more) messages, both present in the NoC switching fabric, are stopping
each other from being delivered. The figure shows radix-3 switching elements in a 2-D grid. The
bidirectional links between each pair of elements either do not use VCs or else both the red and green
transactions are using the same channel. Hence, there is structural contention (Section 6.3), as at
most one transaction phase can be active on each direction of a link. The red and the green
transactions are deadlocked: each is blocked by the other at the parts shown as dashed lines. Red is
waiting for green at element BO and green is waiting for red at element Al. The example is small and
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Figure 3.22 Four elements in a 2-D mesh. Two transactions, red and green, are in a fabric deadlock, since unconstrained cut-through switching with
wormhole routing has allowed each to block the other. The dashed parts cannot complete

both transactions are taking unusually circuitous routes, but it demonstrates how the problem can
arise with unconstrained routing.

The main mechanism for aviding deadlocks in current interconnect designs is restricted-turn routing
[14]. Figure 3.23 (left) shows the eight named turns possible in a 2-D mesh. Four are clockwise turns
and four are anticlockwise turns. A clockwise cyclic dependency cannot form unless all four clockwise
turns are used. Similarly, an anticlockwise cycle requires all four anticlockwise turns. A simple blanket
prohibition on certain patterns of turns is typically used. There are many possible policies that vary in
complexity and suitability for different numbers of dimensions. Examples are:

= Dimension-ordered routing: The various dimensions of movement are made in an overall order.
For instance, in 2-D, traffic should always move as far as it needs in the Y (north/south) direction
before moving any distance in the X (east/west) direction. Figure 3.23 (centre) shows the four turn
directions then allowed. This is known as Manhattan routing. The turn direction can also be
restricted in torus-like topologies, such as making negative movements first.

= 2-D spanning-tree routing: A spanning tree is imposed over the mesh. Only links that are part of
the tree are used. This is very wasteful (albeit widely used for LANSs), but is potentially useful due to
redundancy, as the tree can be recomputed after a failure. A variation is up-down routing, in which
arooted spanning tree is imposed over the mesh. Traffic must always move first along up links
(towards the root) and then only along down links.

= 2-D three-turn routing: In each of the clockwise and anticlockwise turn sets, one possible turn is

prohibited. This allows a dynamic choice from a richer set of paths compared with the static routing
of dimension-ordered routing.
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® General prohibition: Given a regular topology with any number of dimensions or an arbitrary
topology, the allowable set of turns at any given element is judiciously chosen using static analysis
such that full connectivity is retained. Thus, certain turns are removed from each element. In the
absence of VCs, this does not involve storing additional information at an element. On the contrary,
it involves removing the multiplexor inputs and nets that would have provided that turn. An
advanced approach would take the traffic matrix (Section 3.5.1) into account and implement
different restrictions for different VCs.

A deadlock can also arise at higher levels. All deadlock-avoidance strategies are based on
understanding the dependencies between various actions. The most direct way to avoid a higher-level
deadlock is to use physically separate interconnect resources for conveying traffic that might
interfere. VCs provide logical separation instead, which is also sufficient. The interconnect is then
logically composed of a number of independent subnetworks. The individual subnetworks need to be
deadlock free, to avoid a fabric deadlock, but, as just described, this can be determined by a static
analysis of each in isolation and without knowledge of how the traffic on different VCs is correlated.

The next higher source of deadlocks is due to phase dependency. Multiphase transactions have
separate command and response phases in which the response phase is triggered by a command. AXI
(Section 3.1.5) is predominantly a request-response protocol wherein there is an implicit dependency
between the request receipt at the egress port and the triggered response from the same port. With
AXl on wide NoC links, either the command or the response can be multi-word. The command is
multi-word for burst writes and the response is multi-word for burst reads. However, it is never
multi-word for both. Moreover, the response is generated only after full receipt of the command. An
interphase deadlock on uncached AXl is, therefore, unlikely. A protocol that supports long burst reads
with explicit instead of implied addresses would have overlapping command and response phases and
could potentially allow phase-dependent deadlocks.

Figure 3.23 (right) shows how phase dependency can become manifest as an illegal turn, despite strict
north-south first routing being used. We show two transactions between four peers. Both the
request and response phases are quite long, giving significant opportunity for interference. The red
path shows initiator 11 at sO0 making a two-phase transaction on target T1 in the opposite corner. The
response is shown in green. However, before the response arrives, a second initiator, 12, starts to use
the required link between s22 and s21. Its traffic is shown in blue. The link is now tied up since
wormbhole routing is being used and the requests and responses are not on separate VCs. Moreover,
this second transaction also becomes blocked since target T2 needs to use the link from s01 to sO2 for
its response, but that link will not become free until initiator |1 has sent the end of the first
transaction. Inevitably, limited buffering is available in the switching elements and targets, so a
deadlock arises as soon as every resource along the contending paths is occupied.

The essence of the problem is that the targets have effectively implemented a bottom right
anticlockwise (BRA) turn, thus defeating the north-south first policy, which does not allow BRA. Many
application programs avoid deadlocks by chance, due to their traffic routing patterns or short
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Figure 3.23 The eight possible 2-D turns (left), the allowable 2-D turns with Y-before-X (north-south first) routing (centre) and an example set of turns used
by two transactions that obey the north-south first global policy but still manage to deadlock owing to interference between requests and responses. The
turns that violate the global policy are marked with an exclamation mark. BLA: bottom left anticlockwise; BRA: bottom right anticlockwise; TRA: top right
anticlockwise; TLA: top left anticlockwise; BLC: bottom left clockwise; BRC: bottom right clockwise; TRC: top right clockwise; TLC: top left clockwise

transaction lengths, but a small edit to their code, or just running alongside another incompatible
application, could lead to a deadlock.

As well as between the phases of a transaction, dependencies can arise when complete transactions
need to be cascaded, such as when the front and back sides of a data cache or TLB (Section 2.2.1)
share the same fabric. Cache miss operations typically require a fresh transaction to be issued and
need to complete before the triggering transaction completes. To remove this next higher level of
potential deadlock, we use a behavioural traffic specification, such as the one in Figure 3.24. This
shows a dependency between two ports, since the receipt of the read phase of a transaction at port
u_S0 triggers a new read transaction at u_MO. It is important to note that one transaction triggering
another transaction is not the same as a transaction needing a further transaction to complete before
it can complete itself. The former is common and does not lead to a deadlock of the first transaction
since it has completed. The latter must be captured as an explicit inter-transaction phase dependency
and considered during deadlock avoidance.

Fully factoring all the higher-level phase and cascade transaction constraints into a scheme like turn
restriction can become fragile or infeasible. The resulting design can be highly sensitive to an
undocumented dependency. The approach often preferred is to use different VCs for the different
phases of transactions. Given that many transactions are fairly simple client-server operations, the
universal use of a large number of VCs could seem extravagant. However, the set of potentially active
VCs on a hardware link is easy to collate statically given the routing basis. Hence, post-processing to
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Profiles:
t0: { src: u_MO, type: readRequest, avg: 10, peak: 100, req_beats: 1,
resp_beats: 4, qos: 0, lc: false, dst: u_SO }
tl: { src: u_MO, type: writeRequest, avg: 10, peak: 94.3, req_beats: 4,
resp_beats: 1, qos: 0, lc: false, dst: u_SO }
Dependencies:
# Receipt of readRequest at u_SO, triggers a transaction at u_MO
d0: { from: u_SO.readRequest, to: u_MO.readRequest }

W ® N oG A W N e

Figure 3.24 Sample behavioural traffic specification containing a load profile and a transaction phase dependency

remove support for unused VC code points on a link can be applied as a design optimisation step. Of
course, VCs also provide QoS isolation.

No amount of interconnect engineering can stop a programmer writing software that deadlocks.
Hardware support for this highest level of deadlock typically amounts to a bus timeout on a
transaction, implemented at the initiator. More heavy-handed is the watchdog timer (Section 2.7.4)!

3.4.4 Credit-based Flow Control

Flow control is the process of matching sending and receiving rates between components

(Section 3.1.3). As mentioned, for a NoC, the unit of flow control is called a flit. This termis loosely
used for other units of transfer over a NoC, such as a unit that is routed homogeneously or a unit that
is not pre-empted by any other.

Also, as pointed out in Section 3.1.3, the standard synchronous interface cannot be re-pipelined with
just the addition of a broadside register since the forward and reverse handshake nets will be offset in
opposite directions in the time domain. Instead, a FIFO structure must be used, which is more
complex than a simple broadside register owing to the presence of handshake logic. Moreover,
various FIFO designs exist, which either introduce bubbles, waste capacity or introduce undesirable
combinational chains of handshake logic. A FIFO bubble is a clock cycle where data could potentially
move in or out of the FIFO, but is not allowed to owing to the desire to avoid combinational paths
through the control circuitry (Section 6.3.4). For instance, if new data were enabled to enter a long
FIFO chain structure as soon as a word was read out at the far end, there would have to be a
combinational reverse path from the output handshake back to the input ready signal.

Long combinational paths reduce the achievable clock frequency (Section 4.4.2). Thus, the hardware
complexity can become troublesome and it is difficult to select a good balance between FIFO
complexity, the potential for bubbles and combinational path delays in the handshake logic.

Instead, many NoC designs use credit-based flow control. In this type of control, the source keeps

track of how much receive buffer space is available at the destination. A source cannot send a flit
unless it has at least one credit. When links are activated, each receiver must provide at least one
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credit to each sender that might send to it. A receiver must guarantee that it can accept all the flits for
which it has issued credits.

Credit-based flow control can be operated hop by hop (link-level) only, but also end to end for a
source/destination pair. If multiple senders share one receiver, the receiver may dynamically
reallocate the available credits according to priority or observed recent behaviour, but each sender
must be granted at least one credit or else a separate request-for-credit mechanism must exist. Under
end-to-end flow control, a sender that sends to multiple destinations will maintain separate credit
accounts for each destination, whether the traffic shares a common egress VC or not.

A basic hop-by-hop setup is illustrated in Figure 3.25. An up/down counter at the sending end of a link
(the source) is initially loaded with a count value, known as the credit. This is equal to the capacity of
the sink to receive data without overruns. The sink must have an effective FIFO buffer or equivalent
of that capacity. Data forwarded between the components is simply qualified by a valid net, but the
source may send only when it has credit greater than zero. The source decrements its credit count for
each word sent. A credit-return mechanism notifies the sender when it may increment its counter.
This can be asingle net in the return direction, as shown, or a piggyback field in traffic that is returning
in the other direction. However, relying on traffic in the other direction can cause cyclic dependencies
and hence, a fabric deadlock, so such mechanisms must be designed with great care. An explicit
backward flit can also be used to establish the initial credit or retract it.
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Figure 3.25 One possible structure using link-level credit-based flow control, showing tolerance to pipeline stages in the interconnect nets. The forward and
return paths need not be matched in delay terms

In the above description, the unit of flow control, the flit, was a word, equal in width to the data bus. If
aflit has more than one word, it retains that fixed size and a fixed-size packet containing the several
words are sent per credit.

A crude form of flow control that also avoids combinational paths is called Xon/Xoff flow control. A
binary value is conveyed over the return path, which turns the source on or off. This technique is also
commonly used on RS-232 serial ports (Section 2.7.1). Both on-SoC and for the serial port, the reverse
path can be either a physical wire or a token sent via piggyback in the reverse direction traffic (if
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duplex). Compared with credit-based control, Xon/Xoff requires receiver buffering proportional to
the round-trip delay. Since it is coarse-grained, it can also increase the burstiness of the data.
Nonetheless, it is used in some NoC designs.

3.4.5 AMBA 5 CHI

The AXI family of protocols is not ideal for a NoC. AXI has a different structure for reading and writing
whereas a homogeneous NoC fabric is symmetric. Thus, the same data nets should equally well be
able to carry write data from an initiator on the left of the chip as read data to an initiator on the right
of the chip. Arm designed the AMBA Coherent Hub Interface (CHI) protocol for NoC applications,
although it can also be used for an over-engineered point-to-point connection. CHI uses credit-based
flow control.

Compared with AXI, CHI was a fresh start at a bus definition. It provides greater support for NoC
systems. It has a four-layer protocol stack, as shown in Figure 3.26. The top layer, called the protocol
layer, generates and processes transactions at end points and implements end-to-end flow control.
The network or routing layer packetises protocol messages into flits and manages routing over the
NoC. The second-bottom layer is the link layer. It provides hop-by-hop flow control between
connected components (end points or switching elements). The bottom layer is the physical layer,
which controls the nets between components. Commonly the flit size in bits is some multiple, N, of the
physical bus width. Each flit must then be transferred as N separate words over the bus. These are
called phits.

Messages | Protocol Protocol
Packets | Routing Routing Routing
Flits Link Link Link Link
Phits Physical [« P Physical | Physical |[@=======r== =P Physical
End point Switching element (router) End point

Figure 3.26 Two end points interconnected via some number of switching elements. The AMBA 5 CHI protocol layers are shown

In CHI, each NoC component that is connected to a neighbour has a so-called link in each direction.
The links are simplex and consist of CHI channels. All channels can operate at once, so overall we have
a full-duplex bidirectional port. Credit accounts operate for each individual channel, so that a
transmitting channel cannot send a flit unless it has a credit. A single link carries all forms of
transaction, whether reads, writes or any other type listed in Section 3.1.

The left-hand panel of Figure 3.27 shows a minimal CHI implementation, connecting a requester
(initiator) to a completer (target). Transactions are issued on the request channel (TX-REQ). If an issued
transaction has associated data, such as the data for a write transaction, those data are conveyed over
the TX-DAT channel. Responses to transactions are received on the response (RX-RSP) channel. If the
responses have data, such as aread, the data are conveyed over the RX-DAT channel. These four
channels are sufficient for a simple initiator or target that does not participate in cache coherency.
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Figure 3.27 A minimal application of the AMBA 5 CHI specification between a requester and a completer (left) and full net-level details of the six channels
found on a more-typical request node (RN) (right)

The right-hand panel of Figure 3.27 shows the full port found on a typical CHI requester node (RN).
The top two nets form part of a start/stop protocol that is exercised as a port joins or leaves the NoC.
When a credit-controlled channel is being activated or deactivated, care must be taken with the credit
tokens. Each channel of the port has a further pair of nets to implement the start/stop protocol. On
activation, the transmitter must be granted some credit. On deactivation of a transmitter, credit might
be lost and a buffer space in the receiver might become permanently wasted. An explicit deactivate
phase in the link management protocol avoids this problem. During deactivation, a transmitter sends
NOP flits until it has run out of credit. The receiver should not issue credit returns during that phase.
The figure shows six channels. The transmit (TX) group has request (TX-REQ), response (TX-RSP) and
data (TX-DAT) channels. All three channels transmit data. The receive (RX) side, likewise, contains
three receiving channels, called response (RX-RSP), data (RX-DAT) and snoop (RX-SNP).

Each direction of a link has more than one channel for three principal reasons:

1. Deadlock avoidance: Application-level transaction dependencies are complex and varying. They
can be statically enumerated for simple IP blocks, such as a PIO register file. Thus, it is theoretically
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possible to undertake a whole-system deadlock analysis, but this is generally infeasible for anything
other than small systems with simple components. Moreover, the analysis may have to include the
behaviour of the application code, which is highly undesirable. It is much better if the hardware
works as expected for any application code. Hence, as explained in Section 3.4.3, it is better to keep
transaction phase responses separate from the request phases, so that static deadlock avoidance
mechanisms can be deployed for each separately, without having to worry about how they interact
with each other. The multiple physical channels in CHI are not sufficient to avoid all deadlock
scenarios, so they must be augmented with a moderate degree of phase separation using VCs.

2. Loose coupling: The data phase for a burst read or write transaction is much longer than the
request or response phase of a typical transaction. Some transactions are data-less (e.g. a reset
command). Loose coupling between phases maximises the available parallelism (this is the same
reason that write data and write addresses have separate channels in AXI).

3. Spatial reuse: Having more channels increases the throughput for a prescribed maximum word
width. The sizes of the data busses for each channel can be precisely tuned to the widest word they
need to carry.

Looking at the net level, FLIT is the main data-carrying bus of a channel. For the data channels, its
fundamental width is 128, 256 or 512 bits, augmented with about 50 further protocol bits plus any
additional parity and poison bits. For the other channels, the FLIT bus tends to be in the ballpark of
100 bits wide. This will depend on the NoC topology and will be higher for larger NoCs with larger
node indexes. Implementations may also add further AXI user sideband bits as required.

Goingin the same direction as aFLIT are the FLITPEND and FLITV nets. Each channel also has a LCRDV
net that sends signals in the reverse direction. FLITV is the forward data qualifier net. It holds truein
any clock cycle when FLIT has a valid word. The FLITPEND signal is asserted one clock cycle in advance
of FLITV. It wakes up the clock gating (Section 4.6.9) at the receiving end of the link. LCRDV is the
credit-return net. It operates as illustrated in Figure 3.25, by returning a credit token to the sending
end on each clock edge where the link credit is asserted.

3.5 Advanced Interconnect Topologies

Designing an interconnect involves choosing a topology and then deploying the various interconnect
canvas components and configuring them by choosing bus widths. An important first decision is
whether to use a NoC, a centralised hub or one or more bridged busses. Often a combination of all
approaches will be used. The design will be greatly influenced by the floor plan of the chip

(Section 8.6) and the needs of the PD and CD.

Over the past decade, on-chip communication networks have seen rapid changes. These have been
mostly driven by a desire to customise on-chip interconnects to enhance PPA (Section 5.6). However,
optimising the PPA has become more complicated due to the many changes in communication
requirements across generations of chips along with pressure on time-to-market (TTM). While
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bus-based and centralised fabric designs have been the traditional approaches for on-chip
communications, due to the demands for scalable solutions with tight PPA and quick TTM, designing
such systems has become complicated. The problem is further compounded by the unavailability of
tools and the use of back-of-an-envelope and heuristic solutions, which lead to poor PPA and
over-engineering.

Whether designing a custom bridged-bus structure or a NoC, the same traffic engineering models and
synthesis procedures broadly apply. A combination of manual and automatic tooling is possible at all
levels, from choosing the overall topology to setting minor configuration options for each
interconnect component. Manual design typically uses an IP-XACT based GUI editor (Section 6.8.2).
The Socrates tool from Arm is an example. One procedure for automatically generating the topology
is presented in Section 3.9. However, in modern SoC flows, whatever the mixture of automatic and
manual design, we expect the output from each automated tooling level to be amendable in a graphical
editor. Regardless of how the high-level design was created, we certainly expect all the interconnect
details to be designed by a system interconnect generator that also generates documentation and
device driver header files and automatically configures the test procedures (Section 8.8.1).

3.5.1 Traffic Flow Matrix

Standard NoC topologies based on geometric shapes, such as a ring or torus, are briefly reviewed at
the end of this section, but with today’s tools, the only reason for using a standard shape is a lack of
prior knowledge of the expected traffic flow matrix. This use case still arises for certain
general-purpose chips, such as accelerators for scientific computing (Section 6.4).

A traffic flow matrix contains the actual bandwidth and burstiness of traffic between each initiator
and target IP block. It will not generally be symmetric since, for instance, a typical memory location is
read three times more often than it is written. Moreover, some cores will not interact with some
peripherals. If traffic flows share a common resource, the burstiness is used to compute the effective
bandwidth (Section 4.3.3). Policers (Section 4.3.4) can be installed as canvas components if the link
bandwidth that would have to provisioned to otherwise avoid starvation and under-runs would be
very high. For any interconnect design, the performance is highly dependent on the characteristics of
the offered traffic load. Although important as the basis for design, a traffic flow matrix is not
sufficient for simulating or verifying a design. Instead, synthetic traffic generators and real
applications can be used to create an actual workload. The traffic generated can be measured and
combined to form or refine the traffic flow matrix. If a design is to handle all loads envisaged, the
maximum throughput and burstiness for these loads should be used at each point where traffic flows
meet and contend.

Although adding pipeline stages enables higher clock frequencies and hence, a higher interconnect
throughput, pipeline stages also add to the latency. It is important to include a synthetic workload to
model closed-queue systems (Section 4.3), in which a task is performed by a fixed number of threads
or a fixed super-scalar factor (Section 2.2) and the offered load decreases as the round-trip latency
increases. This is because each closed-system worker will not create a new interconnect transaction
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before its previous transaction is complete. Without this, it is easy to think that a high throughput
design that also has high latency (e.g. because traffic is using otherwise free, circuitous paths) will
perform well.

Traffic models that can comprehensively capture all possible traffic behaviour in on-chip networks
across any design are critical for rapid development and for meeting TTM requirements. However,
there are several challenges in designing traffic models and generating network traces for the detailed
analysis of NoC performance that is need to achieve an optimal design.

The synthetic traffic models typically used for NoC modelling generate uniform random flows,
bit-reversal flows, transpose flows and so on. These are abstractions of communication mechanisms
across a broad class of applications. They exercise the interconnect using regular, predetermined and
predictable patterns. Although they tend to be simplistic, they are valuable for stress-testing a
network.

Table 3.2 Some (simplified) synthetic traffic generation vectors and their descriptions

No. Name Description

1.  Rate: open loop Average rate injection from all ingress ports to all egress ports of 8 byte payloads, with no burstiness
Flows: all to all
Length: 8
Spacing: Regular

2. Rate: openloop Average rate injection from all ingress ports to one egress port, with no burstiness.
Flows: all to one
Length: 8
Spacing: Regular

3. Rate: saturated Injection at peak capacity from all ingress ports to all egress ports, with no burstiness.
Flows: all to all
Length: 8
Spacing: Regular

4.  Rate: open loop Average injection rate with random delays between injections, from all ingress ports to all egress ports.
Flows: all to all
Length: 8
Spacing: Random
5.  Rate: open loop Average injection rate from all ingress ports to all egress ports, with variable length packets.
Flows: all to all
Length: Variable
Spacing: Regular

6.  Rate: closed loop Ingress port only generates a new message after previous response. All packets are long (32 bytes).
Flows: all to all
Length: 32
Spacing: Regular

Example synthetic scenario vectors and their descriptions are presented in Table 3.2. These embody
key spatio-temporal characteristics using four independent control parameters: injection rate, flow
matrix, payload size distribution and ingress burstiness. These parameters may be set to generate a
wide range of traffic profiles. A saturated source is one that generates a new transaction as soon as
enabled by the handshake mechanisms. A closed-loop source has some maximum number of
transactions outstanding and when this is reached, it waits for a previous transaction to complete
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before generating any further work. An open-loop source generates traffic at a prescribed average
rate, A, as described in Section 4.3.

A generation framework can simultaneously apply any number of vectors. Its parameters are
dependent on minimal and abstract input information about the system-level design, available even in
the early phases of network design. The input mainly comprises network end points and the
communications between end points. It is agnostic to system design and its interconnect topology.

On the other hand, there are few realistic traffic traces for any chip architecture, especially with the
rapid pace of chip development. Most standard application benchmarks are suitable only for
large-scale homogeneous architectures. These include realistic traffic benchmarks like SPLASH-2
[15], Parsec [16] and MediaBench [17], which can simulate traces from actual applications. Processing
systems meeting diverse application requirements are being developed. These have highly
application-specific architectures and organisations. The associated NoC infrastructures, traffic
characteristics and volumes are significantly affected by the design goals. However, to record the
matrix, these applications can be run on instrumented ESL virtual models of the SoC (Chapter 5).
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Figure 3.28 A ring network. This is a low-complexity NoC structure

Network-on-chip: Simple Ring

Figure 3.28 shows a unidirectional ring topology. The closed loop has two-by-two switching
elements. Each switching element is registered; hence, the ring network can easily span the chip. It
can go off-chip as well, provided it comes back on again. A higher-radix switching element allows more
devices to be connected at a station. A ‘station’ is the traditional name for an access node on aring.
Alternatively, several stations can be placed together. A protocol-converting bridge is needed to
adapt to a conventional bus.

Ring switching elements give priority to traffic already on the ring. They use cut-through switching to
minimise latency (Section 3.4.1). A ring has local arbitration in each element. Global policies are
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required to avoid deadlocks and starvation or else tokens and slot-full markers can be carried on the
ring, like the first generation of local-area networks (LANSs). Like those LANSs, a ring will typically use
source buffering and backpressure: a source is held up until there is sufficient network capacity to
send a message. Hence, there is not always a requirement for queuing in an element. However, there
are significantly different consequences between holding up a request and holding up the
acknowledgement parts of a split transaction. Holding up a requesting channel with backpressure
reduces the applied load and overall throughput. This is a good aspect. However, holding up a
response can lead to a deadlock (Section 3.4.3); hence, it is generally necessary to consider the static
priority of responses over requests.

For a simple unidirectional ring, traffic will travel halfway round the ring on average, so the
throughput compared with a simple bus is 2x. Counter-rotating rings are sometimes used. Each link is
bidirectional and two separate rings operate at once, one in each direction. Trafficis then sent in the
ring direction with the shortest number of stations to the destination. Traffic will now travel one
quarter of the way round the ring, so the bandwidth multiple is 4 x.

A two-level hierarchy of bridged rings is sometimes a sweet spot for SoC design. For example, the Cell
Broadband Engine uses dual rings [18]. At moderate size, using a fat ring (wide bus links) is better than
athin crossbar design for the same throughput in terms of power consumption and area use, as shown
in Section 6.6.3.

Network-on-chip: Torus Topology

A rectangular mesh network that wraps at the top to the bottom and at the right edge to the left edge
has, mathematically speaking, a torus topology. A unidirectional torus is illustrated in Figure 3.20. It
can be constructed in the same way as aring. Indeed, aring is a degenerate torus with one dimension
set to unity. The switching elements in a bidirectional torus need to be radix 5, with connections for
the local traffic and mesh connections north, south, east and west.

Network-on-chip: Hypercube Topologies

Another interconnection topology used, especially in a supercomputer interconnect, is an
n-dimensional cube, also known as a hypercube. A 2-D square when logically extended to 3-D
becomes a cube. As shown in Figure 3.29, a cube projected to 4-D becomes a tesseract. The nodesin a
square have two edges; those in a cube have three edges and those in a tesseract have four edges.
Such hypercube structures provide defined relationships between the number of nodes and the
average number of hops to get to a random other node. The diameter grows with a low exponent
(such as a square root) in the number of dimensions, while the number of nodes grows exponentially,
such as squaring with the hypercube. A hypercube has the smallest diameter for the number of nodes.

High-dimensionality hypercubes are not too hard to wire up at the supercomputer rack scale due to
the freedom of the 3-D world. However, a silicon chip is essentially 2-D with a little bit of extension
into the third dimension from multiple wiring layers. Hence, pragmatic regular on-chip topologies
tend to use a torus structure with a low density of long links that span multiple mesh hops in one step.
These tend to approximate a hypercube of dimensionality 2.25.
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Figure 3.29 Regular cubic structures with 1, 2, 3 or 4 dimensions. 5-D and above are hard to draw

Network-on-chip: Classic Switching Structures

Classic network switching theory was developed for telephone networks, but exactly the same
approaches can be used on-chip. Using a complete crossbar network to connect n inputs to n outputs
has area cost n? and is prohibitive above moderate values of n. There are a number of well-known
switch wiring schemes, with names such as Benes, Banyan, Clos, delta, express mesh and butterfly.
These vary in terms of the complexity and fabric contention factor (also known as blocking factor)
(Section 4.2.1). Each network pattern consists of approximately nlog(n) /k switching elements, where
there are ninputs, the same number of outputs, and each switching element is a crossbar of radix k x k.
The butterfly pattern, also known as a shuffle network, is illustrated in Figure 3.30 (and also

Figure 6.50 for the fast Fourier transform).
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Figure 3.30 The butterfly (or shuffle) network topology (left) and a flattened version (right), with some example paths highlighted for comparison. The
vertical links in the flattened form are bidirectional

Figure 3.31 illustrates the delta wiring pattern. The figure shows 12 switching elements, each of
which would contain two 2-input multiplexers; hence, the total cost is 24 multiplexers. A crossbar
would require 7 equivalent multiplexers for each output, making a total of 56. (You could argue that
higher-radix multiplexers should be used for a crossbar, but multiplexer fan-in is bounded in any
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technology and eventually the full crossbar becomes infeasible.) Hence, the delta pattern provides
full complexity at the cost of some fabric contention. For instance, the links highlighted in blue make it
clear that there is only one path by which initiators 1 and 6 can reach targets 6 and 7; hence, both
routes cannot be active at once. A switch controller is aware of these constraints and can take them
into account as a side condition when creating a schedule (succession of I/O matchings) that
overcomes the main problem of output port contention (Section 4.2.1), which arises even for a full
crossbar. The delta and butterfly have the minimum number of elements for full connectivity, whereas
richer patterns, such as Clos, folded Clos and Benes (not illustrated), have at least one additional layer
of switching elements to provide routing diversity [19]. This reduces fabric contention.
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Figure 3.31 Example of an 8 x 8 switching fabric that uses radix-2 elements and the delta wiring pattern. Interchanging the initiators and targets is equally
valid

In real-world use, elements with a radix greater than two are typically used. The sub-quadratic
growth yields greater return for larger n. These regular structures provide as many inputs as outputs,
but a NoC typically does not need as many initiators as targets, so a symmetric switch system can be
over-provisioned for small networks, but they scale up well [20]. The overall interconnect may use a
hierarchy, with local crossbars interconnecting low-latency clusters. Arm has the Coherent Mesh
Network (CMN) product family [21]. A typical use would interconnect eight local clusters, each with
eight Arm-8 cores. Multiple clusters can be interconnected using CXIX and CCX links (Section 3.8.2)
with memory coherency spanning the whole system.

The physical layout of a switching network does not have to match its logical topology. Clearly this is
impossible for more than three dimensions. For a torus, a 2-D layout is relatively easy, but the flyback
wiring arising from a straightforward 2-D mesh projection, as was shown in Figure 3.20, is
undesirable. The solution is to apply an interleaved logical to physical mapping,suchas 1,7,2,6, 3,5
or 4. Coalescing several switching elements into one higher-order element can also be a good idea.
Figure 3.30 shows a butterfly network (left) that is implemented (right) from large blocks that
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combine a complete row of elements. This is called a flattened butterfly topology [22]. That paper,
although quite old now, contains a good introduction to switching network design.

3.6 Interconnect Building Blocks

SoC interconnect uses various building blocks, such as switching elements, width resizers, FIFO
buffers, policers, protocol bridges, power and clock domain converters (PCDCs), pipeline elements
and so on. These are collectively called canvas components. Many of them are generated by synthesis
tools that macro-generate specific instances from stored templates or synthesise them from protocol
specifications [23]. Each canvas component has some ports that accord to a parametrised instance of
the relevant bus or port standard. Design rules prescribe what sort of inter-port wiring is allowed. For
any given bus standard, a modular kit-of-parts approach is normally taken, so that virtually any
component can be connected directly to any other, subject to design rules and appropriate
reparametrisation. The two common patterns are one-to-one (e.g. initiator to target) and
single-source multiple-destination broadcast.

Specifically for a NoC, the main interconnect components are as follows:

1. Switching element: A typical NoC switching element (aka router) is a crossbar. Hence, it has no
internal fabric blocking but suffers from output port contention. It has a strictly limited amount of
flit buffer and hence, buffer allocation schemes must also be carefully implemented. A switching
element arbitrates at two levels: packet and link. At the packet level, which is the upper level, an
incoming packet must be routed to a pair composed of an output port and a VC number. Using
wormhole routing, once a VC is locked after arbitrating, it stays locked until the end of the packet.
The lower level is the link level. In a per-output VC multiplexer, this level chooses which VC will
send next. The two levels interact and decisions must be based on the available credit, priority and
possibly other QoS and traffic shaping factors. At the higher level, higher priority traffic should be
given an expedited service, i.e. served first (Section 4.3.2). However, the lower level of arbitration
can often be implemented as simple round-robin arbitration over the available VCs that are ready
to send because the granularity of sharing is much finer, which largely overcomes head-of-line
blocking.

2. Protocol bridge: These convert one protocol to another. For a NoC, the outside world protocol is
typically circuit-switched (e.g. AXI) or some other protocol. It will tend to have a different behaviour
and flow control paradigm compared with the internal NoC protocol, which is packetised. A specific
protocol bridge adapts between the NoC and external protocols. For a protocol with more than one
channel in a given direction, like AXI, these may map to the same VC (e.g. write data sharing with
write address). Like a switching element, a protocol bridge may make scheduling decisions, but the
search space is much smaller or zero, owing to the lack of output port contention.

The processing of credits is also different. In some implementations, credit is available for

consumption in the same cycle in which it arrives. Others avoid combinational timing paths by
delaying credit use or by returning it within a clock cycle.
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3. Resizer: These convert between links with differing bus widths. One design approach is that aflit is
always one word on the parallel bus, whatever width is locally in use. Hence, a flit will contain a
different number of bits on different-sized busses. Moreover, the resizer must also do a currency
conversion for credit-based flow control. A similar situation arises when moving to a different clock
frequency with the same word width. Alternatively, a flit can contain a fixed number of bits across
the SoC and occupy multiple consecutive words on all but the widest busses. Also, the flit sizes in
different channels, such as request and response, are independent.

In certain designs, the resizing logic is within a switching element. The resizing operation can
potentially be placed on either the input or the output port of the element. As discussed

in Section 4.3.2, an input-buffered switch has intrinsically lower performance than other designs,
but this can be mitigated by using a higher bandwidth through the multiplexers that perform the
actual switching. The best site for a resizer that transitions to a faster link rate is on the input to the
element. This again accelerates the transfer rate through the switch, potentially freeing up the
output VC for arbitration earlier. However, such a design may limit the maximum clock frequency at
which the element can operate in a real design. Hence, an alternative design of having separate
resizing logic is also used.

4. Pipeline elements: These are inserted in a credit-based NoC to ensure timing closure on long
paths. These are often uncredited buffer stages, which operate at the same clock on both sides and
act as store-and-forward elements in each cycle. There are three design approaches:

= Unbudgeted simple pipeline stage: A broadside register across all forward nets is shown in
Figure 3.25. Independently, the reverse path may or may not be pipelined. The correctness is
unaltered by either of these steps, which was a primary advantage of the credit-based approach.
Although this stage ensures timing closure, the round-trip latency is extended by one or two
clock cycles: one for data and one for the credit return. The higher latency will degrade the
throughput if there is insufficient credit available. If the total issued credit is C and the number of
clock cycles in the round-trip loop is Ry, then the maximum average throughput of single-word
flits on the link is C/Ryr. Unbudgeted pipeline stages do not necessarily degrade link
performance, however. Typical traffic is bursty. The peak rate is unaffected by credit-based flow
control and the mean can often be considerably less than the peak. Moreover, for multi-word
flits, the parameter Ryt needs to be divided by the flit length, so that a single pipeline stage has
proportionally less effect.

= Budgeted simple pipeline stage: The performance degradation compared to the sustained
average rate from an unbudgeted pipeline stage can be alleviated by supplying additional credit.
However, the initial credit cannot be simply increased without penalty: it must be matched with
an additional flit buffer at the receiver. This replication of the additional logic is not a severe
consideration in practice: the distance that the data moves is almost unaltered and hence, energy
use hardly increases.
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" Fully credited stage: A FIFO stage that lends its capacity to the surrounding credit loop is shown
in Figure 3.32. The output side behaves like any credit-controlled source, with its associated
up/down counter to hold its credit. As always, the stage can send data only when it has credit.
However, the stage passes this credit back to earlier flow points and issues credit for its own
capacity. This example has a capacity of unity, soits initial credit of one is held in a single
synchronous S/R stage that is set during a system reset. The credit is passed backwards after a
reset. If there is an optional D-type in the credit-return path, this FIFO stage is fully registered.

Although a fully credited stage is the most comple, it solves all the problems. Moreover, the
complexity it adds can largely be removed from the final receiver. In effect, the logic at the receiver
is spread out over the forward path. The buffering is distributed across a wider physical region,
which makes it more tractable for the P&R tool to meet the timing. The number of stages to include
will be finalised during design optimisation and revisited after the negative slack analysis

(Section 4.9.6). The spreading of the stages can be controlled during placement with the same
algorithms used for D-type migration (Section 4.4.2). These use force-directed techniques where
the number of stages is the quanta of force. The switching-element port assignment can also be
remapped under the same framework to minimise wire crossing. A two-place fully credited FIFO
buffer has lower complexity than two one-place FIFO buffers due to the shared credit counter, but
this might mean the difference between 2 x 3 =6 and 1 x 4 = 4 flip-flops, which, even considering
supporting gates, is hardly significant.
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Figure 3.32 A one-place pipelined FIFO stage using credit-based flow control. A multi-place FIFO stage would replace the synchronous S/R flops used for the
initial credit and backlogged state with counters, which result in better density than cascading one-place stages. (The vertical line on the S input denotes
that setting has priority over resetting when both are asserted)
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3.7 Long-distance Interconnects

A long-distance interconnect spans multiple CDs and PDs and can span between chips using gigabit
links. A long-distance interconnect that supports remote initiators or other forms of DMA is often
required to be cache consistent.

3.7.1 Domain Crossing

A power domain (PD) is a region of logic that is adjusted in supply voltage or power gated together. A
clock domain (CD) is a region of synchronous logic with exactly one clock. A domain boundary arises
where either of these changes. Sometimes they both change on the same boundary. The SoC floor
plan (Section 8.6) defines which component instances are in which domain. Nets cannot simply pass
between domains without care. PDs are either explicitly managed by the SoC user or managed
automatically in hardware (Section 3.7.5). On the other hand, CD crossing, which we discuss first, is
always expected to be automatic between any powered-up regions.

Multiple CDs are used for two main reasons:

1. Power and performance folding: Above a certain frequency, high-frequency logic requires more
power than lower-frequency logic. Hence, a good design often has a larger amount of lower-speed
logic than needed for a compact alternative that is clocked faster. This is part of the folding in time
versus folding in space argument presented in Section 4.4.2. A good example is the L1 and L2 cache
system of a processor; the trade-off is analysed in Section 6.6.1. Hence, it is energy efficient to
operate parts of a circuit with a lower-frequency clock than is needed elsewhere. Another example
is the DRAM subsystem. DRAM chips are available at standard clock frequencies that may not be
appropriate for the main SoC. Alternatively, the desired DRAMs may not be available during the
factory production window and substitution with a DRAM with a slightly different frequency is
forced, but this needs to be done without changing the frequencies for the rest of the design.

2. Physically separate clocks: Systems must continue to operate when networking cables, such as
Ethernet, are disconnected. Thus, each such system has its own clock generator. Data are normally
driven down a networking cable (or fibre or radio link) using the local clock of the transmitter.
Hence, it will not be accurately synchronised with the local clock at the receiving end. Quartz
crystal oscillators are generally used as local clocks (Section 4.9.4). Two crystals each nominally of
10 MHz will actually be different by tens of hertz and the error will drift with temperature, supply
voltage and crystal age.l As explained in Section 3.8, a transmitter’s clock is recovered at the
receiving end using some amount of digital logic. Hence, there are two CDs in the receiver and the
received data must be re-timed against the local transmit clock.

1. Atomic clocks are far better, of course. Their accuracy is higher than one partin 1012 put they are still not accu-
rate enough to avoid rapid metastable failure. Moreover, it is infeasible to incorporate an atomic clock in everyday
equipment.
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The second situation is genuinely asynchronous, whereas the first is often handled using harmonic
clocks, as explained shortly (Section 3.7.4).

3.7.2 Metastability Theory

An input from an asynchronous CD is bound to violate the registers in the receiving CD from time to
time. This cannot be avoided, but it must be mitigated. As will be illustrated in the flip-flop timing
parameter Figure 4.12, a transparent latch or D-type must not be clocked when its input is changing.

A system that is balanced so that it will not move under its own volition, but which will locomote
(move under its own power) when slightly disturbed, is said to be metastable. A pencil exactly
balancing on arazor’s edge is a typical example, as illustrated in Figure 3.33 (left). We expect it to flop
to one side or the other, but how long this will take depends on how finely balanced it was initially. A
bistable device is essentially two invertors connected in a ring. It has two stable states, but there is
also a metastable state. The three states are where the transfer function (the heavy line in Figure 3.33
centre) intersects the y = x line (blue line). The metastable state is the middle one.
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Figure 3.33 Metastability illustrated by a pencil balancing on a razor’s edge (left). The essential structure of a transparent bistable (latch) and a transfer
function (centre). The gate signal and measured responses from a transparent latch with an input wired to a voltage source close to the metastable point
(right)

If the metastable behaviour takes more than a clock cycle to resolve in a receiving flop, further flops
connected to its output have the potential, in theory, to become metastable too. The principal
mitigating technique is to use a high-gain flip-flop to receive asynchronous signals but not to look at
their output until one whole clock cycle later. With a fast transition band (high gain) in the transfer
function, the probability that the next flop will be violated can be reduced to make it unlikely in the
lifetime of the universe. This is sufficiently reliable.
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The oscillogram on the right of Figure 3.33 shows metastable waveforms at the output of a
transparent latch whose input is approximately at the metastable voltage. If a D-type is violated by
clocking while the input is changing, it can likewise be set close to its metastable state. It will then drift
off to one level or the other, but, sometimes, it will take a fair fraction of a clock period to settle. The
settling times are given by an exponential distribution and could, in theory, last many clock cycles.

Arelated problem is that a parallel bus that crosses between CDs will have a skew. It cannot be
guaranteed that all receiving flops will make the same decision about whether it has changed since the
last receiver clock edge.

3.7.3 CD-crossing Bridge

Therefore, a domain-crossing bridge is needed between CDs. This is often called a CD-crossing
bridge (CBRI). The generic name for either a power or clock bridge is a PCDC bridge. The basic
domain-crossing technique is the same whether implemented as part of an asynchronous FIFO buffer,
abus bridge or inside an IP block (e.g. network receive front end to network core logic). Figure 3.34
illustrates the key design aspects for crossing in one direction, but generally these details will be
wrapped up into a carefully designed library block, like the domain-crossing FIFO buffer described
elsewhere (Section 6.3.4 and Figure 6.7). Data signals can also suffer from metastability, but the
multiplexer ensures that these metastable values never propagate into the main logic of the receiving
domain.

Transmit clock domain Receive clock domain

req Guard signal

TO RO R1
( Command or T
data bus
data _ _

= RD O\E)

+— O
mux

TX clock @ RX clock

Figure 3.34 Generic structure of a simplex CBRI. Parallel data are reliably sent between CDs

Figure 3.34 demonstrates the following CBRI design principles:

= Use a one-bit request signal whose transition is a guard or qualifier signal for all the data signals
going in that direction.

= Make sure all the data signals (from TD to TR) are changed one cycle in advance of the guard.
® Pass the guard signal through two registers (R0 and R1) before using it (metastability avoidance).
® Use an expanded width data bus (large N) because crossing operations cannot occur every cycle.
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Here is the receiver-side RTL:

input clk; // Receiving domain clock

input [31..0] data;
input req;

output reg ack;

reg [31:0] RB;
reg RO, R1;
always @(posedge clk) begin
RO <= regq;
R1 <= RO;
ack <= R1;
if (R1 && 'ack) RB <= data;
// ack typically not sent back to sender

An asynchronous signal should be registered in exactly one flip-flop and its output should be further
registered before being fanned out or otherwise used.

A simplex CD-crossing bridge carries information in only one direction. Carrying data in both
directions is commonly required, so a duplex CBRI is formed by a pair of contra-directional simplex
clock bridges. Because the saturated symbol rates are not equal on each side, we need a protocol with
insertable and deletable padding states. These are known as justification symbols, and they have no
semantic meaning. For a processor interconnect, this typically means that the protocol must have
elidable idle states between or within transactions. The elidable symbols in Figure 3.34 are nominally
conveyed in every clock cycle in either domain where the request net does not transition from zero to
one. For the standard synchronous protocol, the justification symbols are simply the clock cycles
where either ready or valid is deasserted.

3.7.4 Harmonic Clocks

When crossing truly asynchronous CDs, 100 per cent utilisation is impossible. The simple four-phase
handshake outlined in the RTL above limits utilisation to 25 per cent at best. A two-phase protocol,
where data are transferred each time the guard net is toggled, restores this to closer to 50 per cent.
Other protocols can get arbitrarily close to saturating one side or the other, provided the maximum
tolerance in the nominal clock rates is known. However, since the clock frequencies are different,
100 per cent of one side is either less than 100 per cent of the other or else overloaded. Hence, some
overhead in justification symbols is always required. Their minimal density can be computed from the
maximum clock tolerances. Latency remains an issue due to the need for additional register delays to
overcome metastability. With a 1:1 clock ratio, in many real designs the domain-crossing latency can
be as high as 3 or 4 cycles in one direction. Lower-latency domain crossing, down to one cycle, can be
achieved using harmonically locked clocks. These are also known as ratioed clocks.
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Figure 3.35 Timing diagram (top) and a basic structure for two systems that use harmonically locked clocks (bottom). Relative edge timings that require tight
phase control are highlighted

Figure 3.35 shows the timing pattern and hardware arrangement for two CDs that have harmonically
locked clocks. In this example, these have a prescribed ratio of exactly 3:2 with no relative error.
Hence, there is no relative phase progression and the timing pattern is fixed. Other natural number
ratios are commonly used, each with its own repeating pattern of relative phases. A ratio of 3:2 can
also be quoted as 1.5 to 1. For instance, an Arm 9 snoop-control unit (SCU) specifies ratios such as 1,
1.5and 2.5 to 1 as the clock ratio between the L1 and L2 caches.

The clocks for each domain are locked to a master source. Our diagram shows an oscillator at the
lowest-common-multiple frequency, but alternatives based on phase-locked loops (Section 4.9.5) are
commonly used to avoid the need for excessively high master clocks. Even though there may be a
frequency error in the primary reference clock, a common reference results in zero relative frequency
error in the derived clocks: the ratio is exact.

As well as having an accurate frequency, the generator outputs need to be tightly controlled in terms
of relative phase for simple domain crossing. Data can be transferred on every active edge of the
lower-speed clock. The blue and red arrows show pattern offsets at which data can easily be
transferred in the fast-to-slow and slow-to-fast directions, respectively. The green arrow shows a
pattern offset where data are being transferred in both directions at once, but this requires very tight
phase margins to be maintained, akin to the level of clock skew tolerable in a single domain to avoid
shoot-through (Section 4.6.9).

An alternative to having tight phase margins in the generator and distributor is for the crossing logic

to select dynamically the best phase of its clock edge to use for the transfer. This is a long-term
decision made at boot time or when clock frequencies are adjusted. Changing the clock edge can alter
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the effective number of pipeline stages in the path, so protocols that are amenable to this, like AXI and
CHI, must be used, and the change of edge made only when the bus is idle.

Although significant design care is needed, with harmonically locked domains, the risks of
metastability are eliminated and domain crossing can be achieved with a lower latency because there
is no need to separate the guard and the qualified signals into different clock cycles.

3.7.5 PD Crossing

As well as crossing CDs, an interconnect encounters PDs, where, at any instant, some parts of the SoC
can physically be turned off (Section 4.6.10) or be in a sleep state. Data cannot be forwarded through

powered-down regions, so an interconnect structure must be aware of PD control policies. There are

two styles of operation:

1. The powered-down structure is brought up before transactions are issued.

2. The transactions are issued and this brings up the powered-down structures.

The former is typically managed by a software programmer who is aware of the requirements. In case
a mistake is made, the hardware should be structured to make the bus transaction abort. The power
isolation barrier will return a failed transaction code, which will raise an interrupt on the issuing core.
The latter can be handled by Arm’s P-channel protocol, or the power disconnect protocol that
accompanies BVCI as part of the OCP family.

The P-channel and Q-channel protocols from Arm [24] use an asynchronous four-phase handshake
(Section 3.1.3) to request a subsystem to change its power mode. Figure 3.36 shows the nets for the
P-channel variant. The PACTIVE output bus from a device reflects its current power mode. Typically,
only afew modes are supported, such as off, sleep and active, so only a few bits are needed. A request
to transfer to a new power mode starts with the power controller encoding the requested mode on
the PSTATE nets and asserting PREQ, as the first two steps in a four-phase handshake. The device then
responds with an active state on either of PACCEPT or PDENY. This response is held until the controller
removes the request. Because only one handshake net transitions at a time, independent of any clock,
the P interface can be implemented safely between CDs.

Power controller | PACTIVE[N-1:0] /:\l PACTIVE[N-1:0]
PSTATE[M-1:0] /'iﬂ PSTATE[M-1:0]
PREQ PREQ
PACCEPT PACCEPT
PDENY PDENY Device

Figure 3.36 Net-level view of the AMBA P-channel interface for device power control
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For an automatic power-up when a transaction is approaching, the P-channel can be drivenin
hardware. The device will be brought to a sufficient state to handle the bus transaction. For instance,
a PIO write to a configuration register does not require the whole device to be awake. There could be
orders of magnitude difference in power use for a subsystem, such as a Gigabit Ethernet interface. A
power wake-up increases transaction latency. If both PD and CD crossing are needed and the target is
asleep, an overhead of tens of clock cycles will be required.

The AMBA Q-channel protocol is a simpler variant that can only ask a device to go quiescent. The
QACTIVE outputis high if it is running or may have more work to do. When low, the device may be
prepared to go to sleep (power down) if requested. In this interface, several of the nets are active low.
These polarities are chosen so that, in the quiescent state, all nets are logic zero. This facilitates
simple default isolation rules.

3.8 Serialiser and Deserialiser: SERDES

Figure 3.37 shows the main components of a serialiser/deserialiser (SERDES). At the transmitter,
parallel data are converted to bit-serial form for inter-chip communication. They are converted back
to parallel form at the receiver. This kind of structure is used for the serial AT attachment (SATA)
interface to disks, each channel of PCle, Gigabit Ethernet and as the basis of many other links. A very
small amount of logic needs to operate at the serial data rate. Careful design, using balanced delay
lines and structures like a Johnson counter (Section 4.4.2), enables standard CMOS processes to
achieve a serial clock frequency of 10 or 20 times the rate used for general logic.

Transmitter | { Receiver
Parallel N
data Decision Parallel
7L> Lige 7L> Serialiser — Line | ' [Ampiitier|  flir-flop De- }0 e ?ata‘
8 | coder /g < driver[ XMoo o ] +I serialiser [7 decoder [
A Channel equaliser > | A
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clock : : FRIE Rx word
Tx word divider Txbit | Clock L alignment clock
clock clock i 5 recovery control

Figure 3.37 Main components of an 8b10b, block-coded SERDES (serialiser/deserialiser) transceiver (transmitter/receiver) operating over a twisted-pair
channel

The figure shows the details for 8b10b block coding, where eight user data bits are transmitted
serially as 10 bits on the channel using a clock frequency 10 times higher. Block coding is an example
line code. There are numerous line codes, each suitable for different types of media. For instance, on a
DVD, the optical channel can carry consecutive groups of ones and zeros with high accuracy, but the
minimum run length of either digit must be above a minimum number, such as 3, or else the mark will
not be made on the media. For most binary channels, the line code must be balanced, meaning that
the average number of zeros and ones should be the same. This means it can be AC coupled and
passed through transformers. Often binary channels need to use polarity-insensitive coding,
especially over twisted pairs, where the two wires might be interchanged. This can be accomplished
using non-return-to-zero invert-on-ones (NRZI) coding where a one is transmitted as a change in the
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channel polarity and zero as a no-change. Transformers (not shown in the figure) provide galvanic
isolation. This prevents ground loops being created between equipment and is recommended for
inter-building data wiring. Fibre optic transceivers can be used instead, without any design changes to
the SERDES logic. These also provide electrical isolation since fibre does not conduct.

Most short-distance digital links use low-voltage differential signalling (LVDS). The advantage of
differential transmission is common-mode rejection. The signal is represented by the difference in
voltage between the two conductors and this is unaffected by any noise voltage or ground potential
mismatch that is suffered equally by both wires. The differential pair is terminated at the receiving
end with aresistor equal to the characteristic impedance of the pair, which prevents reflections and
standing waves. LVDS is a baseband digital signal. Higher-frequency elements of the square waves
that make up a digital signal are severely attenuated, mainly due to the skin effect in electrical
conductors, since higher frequencies are carried only on the outside of the conductor and hence,
experience higher electrical resistance than lower frequencies, which can use all of it. At the receiver,
equalisation is required. Equalisation is the process of amplifying different frequencies by different
amounts to restore the original pulse shape.

After equalisation, the signal is converted to digital form by the decision flip-flop. This is a high-quality
component that internally has high gain and fast transistors. The clock-recovery unit must ensure that
the new clock has a suitable phase for tidy clocking by the decision flip-flop. It must be clocked at the
precise phase where the signal-to-noise ratio is best. This is known as the optimum eye opening. A
poor phase will lead to bit errors along the link and can cause metastable violations (Section 3.7.2).

The receiver regenerates the transmitter’s clock using a clock-recovery unit. The transmit clock can
be recovered from the transitions in the equalised signal provided they are sufficiently common for
the recovery unit not to have drifted so far as to miss the correct bit cell delineation. Using NRZI
encoding, this relates to not having long runs of zeros in the unencoded data, since a one is
communicated as a transition.

Sufficient transition density is ensured using a scrambler, block coding or bit stuffing. With the
illustrated 8b10b block code, only 256 of the possible 1024 ten-bit patterns are used. These are
selected to chose a codebook of only those that have a high density of ones. It is also possible to
maintain the short-term DC balance by monitoring the history and selecting from alternatives that
decode to the same value but which have an odd or even number of ones, according to which direction
of balancing is required. On the other hand, a scrambler exclusive-ORs the data with a hash of the
data generated by a pseudorandom binary sequence (PRBS) generator, which ensures DC balance
and the transition density probabilistically. A PRBS generator is a shift register and XOR arrangement
that generates a random-looking stream of bits based on irreducible polynomial theory [25]. This has
the advantage that the 25 per cent overhead of 8b10b block coding is not encountered, but the
disadvantage that a bit pattern that encounters a communication error due to the way it hashes will
deterministically fail on a retry. Bit stuffing detects a long run of consecutive bits and then inserts a
transition and a further bit to indicate whether the transition arose from genuine data or stuffing. This
is efficient, but has the disadvantage that the data rate varies slightly according to the data sent.
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Hence, block coding is most commonly used in SoC applications. Old-fashioned Manchester coding is
a 1b2b code.

When the receiver deserialises 8b10b data, ten different phase offsets are possible. Only one is
correct. The receiver needs to acquire the correct frame alignment at start-up, but should not
thereafter lose synchronisation. A variety of techniques can be used. If not correctly synchronised,
the patterns received will lie outside the codebook and can be flagged as coding violations. The
receiver can keep adjusting its phase until there are no or a very small number of violations. More
commonly, anidle symbol is also defined, using an extra entry in the codebook. This allows data
qualified with a clock-enable to be conveyed. When there is no word to send, the idle character is sent.
The idle character can be chosen so that it has a unique signature under all cyclic bit rotations and
hence, also serves as a frame-alignment word (FAW) to indicate the correct receiver phase [26]. The
receiving circuit will typically generate a ‘link active’ status output once it has correctly locked at the
bit and word level. It can also report the link quality based on the rate of codebook violations.

3.8.1 PCle and SATA

The switch away from parallel busses for board-level interconnects is best exemplified by the
peripheral component interconnect express (PCle) family of bus standards. These use a bonded
serial interconnect, in which a number of so-called serial lanes run in parallel. Although the skew
across lanes can be multiple bit times, this has no effect when the data are converted back to parallel
form at the deserialiser, since the worst skew is less than one word time. Although totally different in
hardware structure from the parallel bus implementations of PCI, PCle was made to appear exactly
the same to device configuration and driver software.

PCle slots are commonly available with different configurations, denoted as x 1, x4, x8, x16 and x32,
where the natural number denotes the number of lanes. Each lane has a pair of simplex channels in
each direction. Different generations of PCle have successively increased the throughput per lane.
The first generation used LVDS at a baud rate (Section 2.7.1) of 2.5 GHz and 8b10b coding, giving a
throughput of 250 MB/s per lane. Subsequent generations moved to 128b130b, with a lower coding
overhead. The most recent generations use multi-level signalling, giving multiple bits per baud.
Combined with anincrease in baud rate, lane data rates have increased by a factor of 16 for the fifth
generation, with further increases envisioned.

3.8.2 CCIX, CXL and NVLink

PCle has no cache coherence protocol, so explicit cache evict and clear operations must be
implemented by device drivers. The physical layer for PCle has recently served as the basis for various
cache-coherent accelerator connections (Section 6.4). A different transaction-level protocol is carried
over the same serial technology. Two examples from competing trade consortia are Compute Express
Link (CXL) and cache-coherent interconnect for accelerators (CCIX). Both effectively implement a
distributed MOESI protocol (Section 2.4.1). Currently CXL only supports unidirectional coherency,
whereas CCIX supports bi-directional, symmetrical coherency. Compared with a NoC interconnect,
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which can use wide busses, these accelerator interconnects inevitably have much higher latency. This
arises from the longer distances travelled and deserialisation delays of at least one word. However,
every trick possible is used to minimise latency, such as using harmonic clocks (Section 3.7.4) instead
of operating asynchronously.

The NVLink board-level mesh network from Nvidia also has SERDES channels using 128b130b. This
was developed for GPU interconnections. There are opposing market forces, since system integrators
want as few board-level interconnect standards as possible whereas technology providers want to
enforce lock-ins to their own particular variant.

3.9 Automatic Topology Synthesis

The goal of topology generation is to deploy switching elements, bus resizers and various other
canvas elements to meet the PPA targets. Several well-known algorithms in graph theory aid in
topology generation. However, none of these is directly applicable. The topology generation problem
consists of multiple NP-hard (Section 6.2) sub-problems. These must be solved in turn and then, as
with all aspects of architectural exploration, the procedure is iterated. The same principles apply to
designing and dimensioning the debug network in Section 4.7.

Here we present one topology generation procedure. The approach is to start by creating a Steiner
tree and then successively refining the solution to meet the PPA objectives. From graph theory, a
minimum Steiner tree [27] is a tree that connects a set of terminals using the lowest number of
connecting nodes. For a NoC, a node is a switching element. A Steiner tree is intrinsically singly
connected, meaning that there is exactly one route from each point to every other point.

A Steiner tree is generated on a canvas that is overlaid on the user-supplied floor plan (Section 8.6).
The NoC provides connectivity between protocol bridges and other directly connected end points
whose position the user has also provided. The canvas defines the locations of switching elements
(routers). For amesh NoC, the canvas is a rectangular grid. The end points are connected to all
adjacent routers and the Steiner tree is then computed on the mesh. Note that there are still unused
links in the underlying grid. We then compute the shortest paths on the Steiner tree and make an
allocation of flows to VCs. The VC allocation must provide full connectivity but not involve edges
prohibited by deadlock considerations, such as via the turn-restriction algorithms presented

in Section 3.4.3. At the end of route generation, the NoC is functional but not optimised. It is also the
tightest topology, since a Steiner tree was used.

3.9.1 Domain Assignment

Once a candidate NoC topology has been generated, the connectivity, routes and VC assignment are
all known. The CD and PD for each switching element must then be determined. Domain-crossing
bridges (Section 3.7.1) will later be inserted at every boundary.
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The domains for each switching element can, in principle, be set independently. A domain-assignment
algorithm starts from the end points and computes the most favourable domain at each of the
switching elements based on availability, certain metrics and the route. Once the most favourable
domain at each element has been computed, a second pass is made over the information to make a
final allocation based on minimising the total number of domain-crossing bridges needed. The
domains for the remaining NoC components, which have exactly one input, such as policers, pipeline
stages and resizers, can default to that of the canvas component that drives them.

3.9.2 FIFO Buffer Sizing

Buffering can be placed in the source, switching elements or the destinations. Using the standard
synchronous handshake for flow control (Section 3.1.3), augmented with static deadlock avoidance at
the routing level, an interconnect will operate correctly without packet loss and without any queuing
at switching elements. It relies on source buffering (Section 3.5.1). Credit-based flow control, on the
other hand, must have some overt buffering since credit is issued proportional to buffer space, but
again this could be just one flit space per destination. However, this would lead to poor link utilisation.
Buffering must be provided in proportion to the delays in the flow control loop and the peak and
average bandwidth needs of each flow. Moreover, relying on source buffering causes unnecessary
head-of-line blocking (Section 4.3.2) and if there is only a small amount of source buffering, devices
will stall unnecessarily.

With credit-based flow control, the average sustainable bandwidth on a link is given by the ratio of
credit available to the round-trip time Ryr, as described in Section 3.6. The peak rate is the rate of the
lowest throughput link on the path, which will be close to that link’s raw throughput when all trafficis
bursty. If a source generates highly bursty data, a source buffer may sensibly be added, but it should
be kept small with buffering preferably provided at the destination. The buffering in the switching
elements should also be kept small and rely on flow control instead to ensure congestion-free
operation.

The traffic flow matrix, from Section 3.5.1, gives the expected bandwidth and burstiness of traffic
flowing from each point to every other point. As discussed in Section 4.3.3, it is then possible to
compute the effective bandwidth needed on each link of the NoC. Alternatively, since the aim here is
to generate a starting design for subsequent optimisation, various alternatives can be created, based
on peak, effective or mean traffic. Each design can be a seed point for design space exploration (DSE)
and NoC optimisation (Section 6.2.5). At this point, the round-trip time in clock cycles Ryt is known,
the clock frequency frx is known from the domain assignment and the throughput required g has been
estimated according to one of the models. For each design point, the destination buffer depth (or total
amount of credit if there are multiple budgeted stages in the loop) can be directly computed. To meet
the throughput, the depth needed is [Ry7 x g/frx1. To serve bursty peaks for the greater-than-mean
allocation design points, the available credit needs also to be at least the burst size.
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3.9.3 Link Sizing

The final step is to select the width of each link, rounding up to a preferred word size. The link width in
bits is easy to compute based on the peak or average throughput, summed over all VCs that share the
link. Note that in dynamic TDM, such as round-robin arbitration over active VCs, the effective
bandwidth needed on a link is lower than the sum of the individual effective bandwidths of the VCs
due to afurther statistical multiplexing gain. Moreover, bus width provisioning should use a clustering
approach to avoid deploying too many resizers.

The resulting design will nearly always miss the PPA objectives, since it has only taken performance
into account. The tightest tree in terms of number of elements in the design is inherently suboptimal
when dynamic performance is considered due to the arbitration overhead, head-of-line losses
(Section 4.3.2), priority crosstalk and queuing delay. Thus, this is a multiple-objective combinational
optimisation problem. The design will then be subject to a sequence of automatic and manual
refinements to explore performance improvements. This is discussed in the design space exploration
section (Section 6.2.5).

3.10 Summary

This chapter has traced the story of SoC interconnects from the early days of a single bus to today’s
highly-complex NoCs. Apart from the desire for ever-increasing bandwidth, the main motivations for
change have been the increasing number of initiators and the increasing difficulty of sending a signal
all the way across the silicon die.

The fundamental requirement of an interconnect is to provide connectivity between initiating
components (processors, /0, etc.) and target components (memory, peripherals, etc.). Not every
initiator requires access to every target and the optimal solution may be an irregular interconnect,
with asymmetric connectivity. Performance requirements will typically be known in advance. For
example:

1. A graphics processor might need a guaranteed memory bandwidth to reach its frame rate target
for a given screen resolution and scene complexity.

2. A CPU might have a hard deadline within which to service an interrupt. In this case, the
interconnect latency (time taken for a transaction to be serviced) could be critical in meeting its
requirements.

The main factors that influence interconnect performance are topology, clock frequency, bus width,
bridge crossing, physical distance and congestion. Furthermore, these are all interlinked, so finding a
near-optimal solution for a set of requirements can be very difficult and time-consuming.

An application-specific SoC may use bridged busses or a custom NoC architecture whereas a

general-purpose SoC that embodies heterogeneous compute cores and accelerators will tend to use a
regular mesh NoC. Going forward, such a NoC is increasingly likely to be cache coherent, with L2 and
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L3 caches connected to the network instead of directly connected to the cores they serve. The mesh
may have some number of longer links that are effectively in the third dimension. There is a much
greater exploitation of the physical third dimension for multi-chip tiles and stacks. For longer
distances, parallel interconnects have been replaced with bonded serial channels, but DRAM
currently remains parallel and instead uses line termination and a buildout that is calibrated at boot
time.

An interconnect, as a whole, needs to convey a variety of different operations. As well as memory
reads and writes, which are usually done in bursts, there are programmed I/O operations on
peripherals, which need to be non-cacheable. Again these are reads or writes, but they usually
transfer one word at a time when initiated by a processor, otherwise DMA is used. Both occasionally
require atomic operations. A variety of broadcast messages also needs to be conveyed, especially for
cache and TLB maintenance. Communications are also required for debug (Section 4.7) and interrupt
traffic. These can use separate wiring or else be multiplexed over the main data plane.

An interconnect is normally synthesised automatically from specifications of the end points and their
traffic matrix. SoCs can have circuit-switched or packet-switched structures and these may be
coherent or incoherent. Synthesis tools include the CMN-600 Coherent Mesh Network Generator
from Arm [21], and a companion tool for a non-coherent interconnect [28]. These are typically
invoked from a GUI-based system integrator tool, as will be discussed in Section 6.8.2.

3.10.1 Exercises

1. What s the principal reason that protocols that fully complete one transaction before
commencing another have gone out of fashion? Estimate the throughput of a primitive
MSOC1-like bus protocol implemented with modern technology.

2. What affects interconnect energy consumption as the number of channels that make up a port is
increased from two (for BVCI) to five (for AXI)?

3. Why is a mix of coherent and non-coherent interconnects always found on a SoC? Why are some
peripheral devices connected to a special-purpose bus?

4. Sketch circuit diagrams for a registered pipeline stage inserted into an AXI channel and a CHI
channel. What design decisions arise in each case and what effect do they have on performance
and energy use?

5. Sketch the circuit for a bus width converter for an AXI channel if the same clock frequency is used

on each side. What are the differences from credit-based flow control? When credit-based flow
control traverses a bus width changer, what is the most sensible meaning for a credit token?
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A NoC uses static TDM to separate VCs on a link with the schedule fixed at tapeout. Should the

receiving link have a shared buffer pool or a pool that is statically partitioned for use by different
VCs?

Another NoC uses dynamic TDM. Additional nets convey a VC number that identifies the data on
the remainder of the data nets. Discuss the likely performance and energy differences compared
with static TDM. (You should be able to improve your answer after reading the next chapter!)

For what types of application does NoC latency affect system throughput?

What are the advantages of having fully automatic hardware support for memory coherency
compared with leaving it up to the programmer to insert special instructions?

A C programmer writes pthread_mutex_t locks[32]. A friend says this will have very poor
cache performance. Why might the friend say this? Are they correct?
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Good SoC design involves simultaneously optimising a number of performance targets. Some targets
are hard to quantify, such as how flexible the chosen solution will turn out to be for future applications
that are currently unforeseen. Others have quantitative metrics whose values can generally be
predicted by analysis or from high-level electronic system-level (ESL) models of the solution and
accurately predicted by a low-level simulation where necessary. To avoid bottlenecks, SoC design
should instantiate a balanced set of resources. In this chapter, we present some theory and some
practical techniques behind these metrics. We discuss several principles of system design that are
widely applicable outside the sphere of SoCs, such as parallel processing theory, traffic theory and
queuing theory. We look at where the electrical energy goes and how to design secure and
debuggable chips.

4.1 Design Objectives and Metrics

The main design objectives for a SoC are as follow:

1. Performance: Traditionally, the most important parameter for computing systems is their
processing throughput, measured as million instructions per second (MIPS) or floating point
instructions per second (FLOPS). Although this remains a key metric, it cannot be reduced to a
single figure in a complex modern design, especially one that contains heterogeneous processors
and accelerators. For embedded and mobile applications, video processing rates are often more
important than main processor performance. Video compression is especially challenging and the
design objective will be expressed using metrics such as frame rate and resolution.

2. Memory bandwidth: Directly related to processor performance is main memory bandwidth.
Generally, there is one DRAM channel and all the on-chip processors use it to a greater or lesser
extent. The data width and clock rate for the memory channel between DRAM and the SoC are
critical design decisions, both for performance and energy use. It is common to support more than
one point in this design space, with the final choices being based on the PCB or MCM assembly
time for data width and the boot time for the clock rate.

3. Energy use or battery life: Energy efficiency is, today, also often a critical consideration. Whether
for battery-operated devices or a server farm, low-power design principles are applicable. The
power control mechanisms selected affect the design at all levels. Electricity and cooling are major
costs for cloud servers and data centres, comparable to the depreciation costs of the hardware.
For portable equipment, battery life remains a design consideration despite significant advances
in battery power density in the last decade. A mobile phone should offer at least one day’s
operation between charges, whereas a ceiling-mounted smoke and intruder sensor may target a
10-year battery life.

4. Power modes: A SoC as a whole will support various sleep modes or standby modes
(Section 4.6.10) and various regions of the SoC can be power gated to be on or off at any one time
(Section 4.6.10). When powered on, various clock rates and power supply voltages may be
dynamically selected by dynamic voltage and frequency scaling (DVFS) (Section 4.6.8).
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5. Production costs: The production cost for most SoCs with a particular geometry (technology
node) is a simple function of the silicon area. Cutting-edge silicon production, in which the
geometry is less than 10 um, is much more expensive than older lines producing 45 um. The
production lines for the larger geometry are mature and ultra reliable, whereas the newer ones
can have significant yield problems. For a geometry, the yield is inversely proportional to area
(58.11.1). Expenses related to each chip are called recurring costs. Apart from silicon wafer
processing, they also include testing and packaging overheads (Section 8.8.3).

6. Design costs: The one-off costs in designing a SoC are called non-recurring expenses (NRE). As
discussed in Section 8.11, these include engineering time, computer time and mask-making costs.
Engineering time includes the creative aspects of hardware and software design and the extensive
effort required for design verification and test program generation. Pricing structures for IP block
licences depend on the supplier, but typically include both recurring and non-recurring
components.

7. Security: Increasingly, SoCs need to be secure. It is better if the design IP and embedded software
are relatively secure against reverse engineering. Also, boot-time and runtime security
mechanisms are increasingly important. Secret keys for various public-key infrastructure (PKI)
resources need to be held securely for secure booting (Section 9.1.1), digital rights management of
copyrighted media and secure applications, such as online purchases or unlocking doors. The
security architecture for a SoC may include multiple roots of trust, in which information isolation
follows a partial order different from the simple total ordering imposed by a traditional supervisor
mode privilege flag. For instance, the telephony APl on a phone may need to be insulated from
user applications before the network provider approves the platform. Moreover, the user’s files
should be protected from rogue network providers.

8. Observability: A device must be testable and debuggable, which conflicts with its security. Test
modes and a trace and monitor infrastructure must be deployed to capture behaviour so that
bugs, especially software bugs, can be found.

9. Flexibility: Due to the high NRE of a SoC design, it is normal to address a family of related
applications with one SoC. For instance, one design could be used for a printer, a scanner and a
printer/scanner. Certain parts of the SoC may then never be used in the lifetime of the more
specialised products. The same goes for the broadband modem example in Figure 1.11, in which
the main SoC might have two USB ports but zero, one or two might be wired out on the PCB,
depending on the product. If a SoC is intended for a single target application, there is greater
certainty about the likely data flow between internal IP blocks compared with a general-purpose
chip. Although transistor count does not present a significant design constraint in modern VLSI,
hardwired data paths are more efficient than switched structures: wiring length and hence,
energy are lower if less area is used. A solution providing a non-blocking full crossbar
interconnection will generally be over-engineered.
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10. Safety and reliability: Functional safety levels need to be higher in some application areas than
others. To achieve high reliability, memory can have error correction (Section 4.7.6) and busses
can have parity bits. Processors can be duplicated and work in lockstep for error detection, or
triplicated, giving triple modular redundancy (TMR), which seeks a majority vote in most cases of
disagreement.

The three major metrics of power, performance and area are often considered together using the
acronym PPA.

4.2 Parallel Speedup Theory

In an ideal world, if work can be divided n ways and performed in parallel, then an n-times speedup
should be achieved. Alternatively, for zero speedup, running a workload in parallel on multiple slower
processors gives a considerable energy saving compared to a faster serial execution, with benefits
arising from both the CMOS speed law (Section 4.6.6) and Pollack’s rule of thumb (Section 2.1.1).
Hence, parallel processing is preferred, provided the workload can adequately expressed as parallel
tasks. In this section we present basic parallel processing theory.

Figure 4.1 illustrates a task consisting of 35 units of work using parallel processing arranged over four
processors. Like many tasks, the work that can be done in parallel depends on a common core of work
that cannot easily be done in parallel. This is the initial, serial and start-up phase of four work units. A
further two serial units are shown at the end, typically to aggregate the final result. A dependency
arises when the input to a unit is computed by a previous unit. In general, the dependency graph can
have any structure, but one path (or several equal paths) between the start and finish will have the
maximal length. In our figure, this is 4 + 8 + 2 = 14, which is known as T.. This is the fastest possible
execution time given sufficient parallel processors. Using four processors, the actual execution time is
the same: T4 = T, = 14. Using three processors with a good interleaving of work that reflects the
dependencies allows the 5 units from the lower strand to be run as 2+ 2 + 1, which extends the central
region from 8 to 10 units, extending the execution time from 14 to 16 units. Finally, by using one
processor to run everything, the job would take T4 = 35 units. It does not matter which server runs the
serial part of the problem, as no context-switching work between processors can help. The speedup
achieved is 35/14 = 2.5. The available parallelism of the task is Ty /T, = 2.5. Since we achieved this
with four processors, adding a further processor would not help.

Start Finish
Total work

4+29+2 = 35 units

[ x35

Serial 4 Serial 2

Parallel 8+8+8+5

Figure 4.1 Example of parallel speedup. 35 units of work run across four servers, showing dependency arcs typical in the map-reduce design pattern. Arcs
implicitly exist between all adjacent work unit boxes
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It is worthwhile memorising the structure and behaviour of two formulae that are rather grandly
called laws. These formulae give fundamental insight into any system design, such as a SoC, where
parts of a task are to be accelerated with parallel or custom processing elements:

® Amdahl’s law, which assumes that the problem size remains constant as the system grows

" Gustafson’s law, which proposes that the problem size should scale while being bound by a fixed
amount of time.

Amdahl’s law gives the speedup of a job due to accelerating some fraction of it. The Amdahl speedup
arising from parallel processing is given by S+ (1 — S)n, where Sis the fraction of the job that cannot be
accelerated by parallel processing and n is the number of processors. For our example, n =4 and
S§=6/35,s0 Amdahl’s formula gives 3.5. This is an upper bound for the speedup. The real speedup was
lower due to dependencies within the parallel part of the task, which was not uniformly parallel.

An embarrassingly parallel problem is one where there is zero dependency between work units that
can be done in parallel. An example is computing pixels in the Mandelbrot set or the inverse DFT
computation when decompressing a JPEG. Each pixel or pixel tile can be processed fully
independently. Such problems should get close to a linear speedup with parallel processing, whereas
typical examples, like that of Figure 4.1, have a sublinear speedup.

In general, as a system grows in computational power, the problems run on the system increase in size.
Gustafson’s law gives the effective speedup as parallelism is added when the workload is increased so
that the overall time taken is unchanged:

speedup(n)=n+(1-n)S

This law tends to describe real-world situations where users have a preferred maximum processing
time and want the best quality result for the number of available processors.

4.2.1 Contention and Arbitration

To create a balanced system, it is also critical to understand queuing and contention. When multiple
clients wish to share a resource, we have contention and an arbiter is required. Typical shared
resources are busses, memory and multipliers. At such a multiplexing point, an arbiter decides which
requester should be serviced next. In SoC design, we encounter two forms of contention:

= Target contention occurs when multiple initiators desire access to the same target. As mentioned
in Section 4.5, managing target contention for memory systems that share data between parallel
processing elements is one of the most critical design decisions.

® Fabric contention occurs when initiators are accessing different targets but their flows of access
trafficinterfere in the interconnect. Using additional or wider interconnect paths reduces fabric
contention, but over-engineering the interconnect wastes energy and requires more area, which
ultimately costs even more energy (Section 4.6.2).

157



Modern SoC Design

Contention must be managed by a combination of queuing and flow control. Unlike a packet-switched
network, such as the Internet, a SoC interconnect is normally designed to be lossless; hence, traffic
cannot simply be discarded at an overflowing queue. Another difference is that there is a relatively
low latency reverse path in terms of handshake nets or credit-return mechanisms, which means that it
is easier to provide lossless operation, but at the risk of a fabric deadlock (Section 3.4.3). The two main
forms of flow control used for SoCs are:

= Link-by-link handshakes, which cumulatively apply backpressure on an initiator or traffic source to
prevent it from introducing new work into a congested system.

= Transport protocols, typically based on credit-based flow control (CBFC), which is discussed in
Section 3.4.4.

The way a multiplex arbiter chooses which source to service next is called the arbiter service
discipline: Complex arbitration schemes can be created from three basic disciplines:

1. Static priority: Each source has a permanently allocated priority and the requesting source with
the highest priority is selected. The priority could be the port number. This is stateless.

2. First come, first served: This is a FIFO queuing discipline, in which work is maintained in its arrival
order.

3. Round robin: The sources are placed at points around a virtual circle and, always moving in the
same direction around the circle, service is granted to the next requester after the last-served
requester. A last-served state variable must be maintained inside the arbiter.

A complex discipline might be to have sources classified into several levels of priority and for round
robin to be used within a priority level. All disciplines can be considered a variant of priority service if
priorities are dynamically calculated based on various factors. For instance, the earliest-deadline-first
discipline uses hard real-time timing requirements as the basis for priority. Another major policy type
is pre-emptive, in which a granted resource is de-assigned while the request is still asserted. Complex
disciplines involve dynamic priorities based on use history to avoid starvation. Alternatively, they
implement a maximal matching between a number of requesters and a number of resources.

Arbiter Circuits

Arbiters can be implemented in software or as physical circuits. The circuits may be synchronous or
asynchronous. Figure 4.2 is a schematic of an example three-input arbiter with the RTL
implementation. It has three request inputs and three grant outputs. Figure 6.31 shows Chisel HDL,
which parametrically generates circuit arbiters with any number of inputs.

158



Chapter 4 | System Design Considerations

Clock

module arbiter(input clk,
input reset,

Reset input [2:0] regs,

Grant0 output reg [2:0] grants);
Req0
Grant1 always @(posedge clk) if (reset) grants <= 0;
Reaqt else begin
grants[0] <= reqs[0]; // Highest static priority
Req2 Grant2 grants[1] <= reqs[1] && !(reqs[0]);

grants[2] <= reqs[2] && !(reqs[0] || reqs[1]);

3-Input, Synchronous Arbiter end

Figure 4.2 A schematic of a typical arbiter (left) and the RTL implementation (right) for a three-port synchronous example using static priority with
pre-emption. See also Figure 6.31

4.3 FIFO Queuing Theory and QoS

A SoC consists of many interacting subsystems. Work items generated by one subsystem are often
queued while waiting to be served by another. These queues could be in-memory structures managed
by software or hardware FIFO buffers in the NoC interconnect with protocol adaptors. Queuing
analysis provides high-level insights into how a system will behave in terms of throughput and latency.
Such an analysis is essential when working out how much waiting area to provide (FIFO depth) and
can influence the overall system design. In this section, we present the basic analytical models of open
queuing theory as applied to simple components. These give insights in their own right and will also be
used further when making abstractions for ESL models in Chapter 5.

Classical queuing theory applies where there is a FIFO queue between any two IP blocks in a SoC.
Each task or work item entering a queue is called a customer and each IP block that removes an item
from a queue is called a server. A queuing system may be open or closed. In a closed queuing system,
there is a finite number of customers, which continuously circulate between IP blocks. In the SoC
context, these can be analogous to threads running on in-order application processors that block
waiting for a read response before they can proceed.

The quality of service (QoS) that a customer receives depends on how many other customers are
contending for a resource and the relative arbitration policies. QoS can be analysed in terms of
deadlines and fairness under normal and overloaded operating conditions. Using a static priority will
result in starvation of lower-priority classes during periods of heavy higher-priority traffic.

If traffic flows pass through a number of shared resources, providing fairness is generally
incompatible with maximising system throughput. Various water-filling algorithms reconcile fairness
with throughput. A typical algorithm starts by nominally allocating zero resource to each flow and
gradually increasing the actual allocation to each flow in proportion to its target allocation. When
resources start to saturate, no further allocation is made to the flows that have become restricted.
This maximises the utilisation at pinch points while accurately tracking the desired relative weighting
between flows and allocating as much as possible.
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A complete system with a closed queuing model is normally too complex for an analysis with queuing
theory to be worthwhile. However, an ESL model may give sufficient insight. With super-scalar
processors or write posting (Section 3.2.3), the number of customers for the fabric and the targets are
dynamic, so closed queuing theory cannot be applied.

An open queue model is typically used to understand the behaviour of an individual queue in a
subsystem containing several queues and servers. In an open queuing system, customers randomly
enter the system and subsequently leave the system once they are processed. The random entries are
modelled using a standard customer generator with prescribed characteristics, such as the mean
generation rate and the variance and distribution of inter-arrival times. By varying the mean
generation rate, denoted A, it is possible to explore the local behaviour of a subsystem and gain
insights into appropriate memory sizes and bus widths. However, we must be aware that
finite-customer effects may make the modelling incorrect. For instance, any queue that has a capacity
greater than the closed number of customers cannot overflow in reality. However, there would be a
finite probability of it overflowing under an open model with random arrivals.

4.3.1 Classical Single-server and Open Queue Models

Figure 4.3 presents the most basic queue configuration. The average arrival rate of customers per
second is A. The average service time for a customer at the server is 1/u s, meaning that the maximum
sustainable service rate is u jobs per second. The server utilisation is

Mean arrival rate A

p= 1/Mean service time - U

The utilisation is always less than unity in a stable system. If the long-term average arrival rate is
greater than the mean service rate, the server will become overloaded and the queue will overflow.

Mean arrival rate Queue Server Mean departure rate
A — i : A
]

Mean service time
1/u

Figure 4.3 General structure of a queue/server pair with mean customer rate A and mean service rate u

A FIFO queue is typically used to match the arrival process to the server. An implementation of a
queue always has a bounded capacity Nmax, and so being able to estimate the average number of
customers waiting in the queue is critically important for queue dimensioning during system design.
The average time waiting in the queue W and the average length of the queue (number of customers in
it) N are fundamentally connected by Little’s law: N = AW. Moreover, the overall time a customer is
delayed at this point in the system D is the sum of its queuing time W and its mean service time 1/, so
thatD=W+1/p.

A FIFO queue with N servers is often denoted using Kendall’s notation A/S/N. A and Sindicate the
arrival and service delay distributions. The most two common distributions (also known as disciplines
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in this context) are Markovian (denoted as M) and deterministic (denoted as D). The behaviour of a
stochastic system can be modelled with a random number generator. The most important stochastic
source is a Markovian generator, whose emissions have random, exponentially distributed spacing.
The most quoted example is the spacing between Geiger counter clicks in radioactive decay. When D
is quoted, it generally means constant and fixed and not merely deterministic. Three basic queueing
configurations are illustrated in Figure 4.4. These are:

1. M/M/1: Markovian arrivals, Markovian service times, one server.

2. M/D/1: Uniform arrivals, uniform service times, one server. This has half the queuing time of
M/M/1.

3. D/D/1: Uniform arrivals, uniform service times, one server. This has a very flat delay until it jumps
to infinity when overloaded.

20 T
MM/l —— |
M/D/1 —— |
D/D/1 ||

15 - [ i

Average Number In System (Ngystem)
=
o
T
|

0 0.2 0.4 0.6 0.8 1
Utilisation (p)

Figure 4.4 Plots of the average number of customers in a system versus the utilisation p for three common arrival/service disciplines

Table 4.1 Formulae for Nsystem and Nq where Nsystem = Nq + Nserver

Discipline Nsystem No
2
P p
M/M/1 — i
/M/ —p 1—2p
2
M/D/1 S st
/b/ 2(1-p) ** 20-p)
D/D/1 Nq+p :(1,’])00

The formulae in Table 4.1 show the general trend that the delay goes up accordingto 1/(1 - p).
Markovian systems have higher average delays than deterministic systems. The latter saturate much
more abruptly. When connecting two existing components together, we have no control over their
traffic patterns, but as we aggregate sources and servers, the patterns become more Markovian as a
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consequence of the central-limit theorem and we benefit from the gain due to statistical multiplexing
(Section 4.3.3).

The Markovian approximation is often not a good approximation of reality, but it still gives highly
useful insights and has a number of beneficial properties:

1. Multiplexes of Markovian sources are Markovian: If two or more Markovian sources are
multiplexed, the resultant stream is Markovian with mean arrival rate the sum of the means.

2. Multiplexes of anything become Markovian: Due to the central-limit theorem, if uncorrelated
arrivals are combined from any distribution, the composite arrival process is Markovian.

3. Poisson arrivals: The number of customers arriving in any fixed measurement interval is given by a
Poisson distribution.

4. Demultiplexes are Markovian: Splitting a Markovian stream with any weighting or time-invariant
policy produces Markovian child streams.

5. Memory-less property: The probability of an arrival in the next time unit is unaffected by how long
it has been since the last arrival.

6. Markovian arrivals see time averages: The PASTA theorem is that Poisson arrivals see time
averages. If a Markovian source generates a customer, the expected state of the system it enters is
the average state.

The memory-less property results in the paradox of mean residual life. The residual life of a process is
how long it is expected to runinto the future. For example, if omnibuses pass a bus stop with a uniform
distribution of once per hour, then the average wait for a person randomly arriving at a bus stop is half
an hour. However, if the busses arrive with a Markovian distribution with a mean rate A = 1 per hour,
then the average wait is 1 hour!

The coefficient of variation for a component in a queueing system is the ratio of the standard
deviation to the mean for its discipline. This is zero for a deterministic component and unity for a
Markovian (random) discipline. If we use G to denote a generalised discipline for which we know the
two mean service rates and the coefficients of variation cg4, then the Kingman G/G/1 approximation
gives the average queuing delay and number in the queue as:

2
P 2, 21 P 2.2
Do~ =———(c5+c;)= No=DgA~ =———(c7+¢5)
Q 2(1-p) ATy Q Q 2(1-p) AT
For the equivalent totals for a queue-plus-server subsystem, the time and number in the server need

to be added to the queue figures, respectively, 1/u and p.

There are numerous extensions to the basic Kendall form for describing a queue. Often arrivals or a
service are batched for some number of customers arriving or being served together. These are
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known as bulk arrival processes and batch servers. Equations are widely available for the average
queue length and loss probability for a given queue capacity and the 99th percentile of queue time.
The 99 percentile delay is important for real-time media, such as audio, since the playout buffer must
be dimensioned according to the tail of the delay distribution to avoid frequent under-runs.

4.3.2 Expedited Service Queuing

For systems that support traffic with different static priorities, it is usual to give an expedited service
to the higher priorities. This simply means serving them first. If the system is well designed, the
expedited traffic should experience very little priority crosstalk, which occurs when one flow alters
the service given to another. With strict priority, a flow should experience interference only from
higher priorities. Figure 4.5 shows a typical setup that uses two queues for two priorities. For
example, if work is being conveyed on an AXI4 streaming bus (Section 3.1.5), the priority can be
indicated in the AxQOS field. A work item arriving at a higher-priority queue will not experience any
queuing delay from lower-priority traffic. The crosstalk it will experience is just the mean residual life
of a single customer’s service on the server. Hence, provided individual service operations are short,
the higher-priority traffic will hardly see the lower-priority traffic. For this reason, longer operations
are often fragmented into smaller tasks with correspondingly shorter service times, so that they can
be effectively pre-empted. A good example of this is the use of flow-control elements (flits) in NoCs
(Section 3.4.4). Using two separate queues avoids priority crosstalk of a specific form known as
head-of-line (HoL) blocking, which occurs when higher-priority work is behind lower-priory work in a
queue and cannot be served straight away, due to the first come, first served dequeuing discipline of a
FIFO buffer.

High-Priority Queue

Mean arrival rate

A

Server

»
>

Low-Priority Queue Mean

departure rate

Priority
service
multiplexor

Priority
de-multiplexor [——

Figure 4.5 Separate queueing for high-priority and low-priority traffic gives an expedited service

If queues are implemented as part of a switching element that routes traffic from some number of
sources to various destinations, the queues (known as buffers) can physically be at the output or input
links. Figure 4.6 illustrates both types of queuing, though it is not necessary to have queuing at both
the input and the output. In an input-buffered switch (with queues only at the input ports), the data
rate in and out of the input queue is the same as the link rate, assuming that all links to and from the
switch are the same. On the other hand, for an output-buffered switch (with queues only at the
output ports), the data rate into the output queue can be, in the worst case, the sum of all the input
port rates. This creates a considerable design challenge for a switch with a large number of inputs.
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Figure 4.6 Generic switch that includes both input and output buffering on the input and output ports, respectively, of a buffer-less switch fabric. Flow
control operates between the switch fabric and the buffers in the switch

Output buffering is the ideal design, since input-buffered switches have lower throughput owing to
HoL blocking in the input queues, which can leave the output ports idle while traffic is served in arrival
order from each input queue. Typical designs use additional levels of storage, virtual queues at the
input per output port or intermediate levels of store. A simpler approach is to use both input and
output buffers such that the transfer rate between the input and output buffers is 1.5 or 2 times the
link rate. If the switch ports use link-level flow control, one further design pointis to rely entirely on
source buffering and have no buffers in the switch. This is how first-generation multi-access LANs
operated, such as rings and shared-bus Ethernet designs.

4.3.3 Statistical Multiplexing Gain

In terms of processing delay, a powerful, monolithic server with a single queue always performs better
than a number of queues that feed individual smaller servers if the smaller server capacities sum to
the same total as the monolithic server. This is due to statistical multiplexing gain. On the other hand,
a collection of smaller servers may require less energy in total (Section 2.1.1).

If a channel with a given bandwidth carries a number of traffic flows, the effective bandwidth of an
individual flow is the share of the channel bandwidth that is consumed by carrying it. The effective
bandwidth can also be defined as the amount of bandwidth that needs to be allocated for a flow to be
conveyed without experiencing excessive loss or delay. For uniform flows, the effective bandwidth is
just the mean rate. If the sum of the mean rates equals the channel capacity, no further traffic can be
conveyed, which is not surprising. However, for bursty traffic, in the absence of flow control or
backpressure, the effective bandwidth of a flow is greater than its mean and is closer to its peak rate.
Except for constant-rate multimedia streams, computer-generated traffic is always bursty.

Figure 4.7(a) shows a concentrator that simply combines 10 flows. Each flow has an average rate of
100 kbps, so the combined flow has an average rate of 1 Mbps. However, each flow has a peak rate of
100 Mbps. The peak-to-mean ratio, known as the burstiness, is 1000. If the combined channel was
dimensioned to support all sources bursting at once, it would need to support 1 Gbps. However this is
unnecessary. The probability of all flows bursting at once is 1 in 103*10, This situation would last for
one average burst time. Assuming this is 1 ms, the all-bursting situation would be expected every 1027
seconds, which is 1017 years. This can be ignored, since the lifetime of the universe is only 1010 years.
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Figure 4.7 Two scenarios that demonstrate statistical multiplexing gain for N = 10 sources. Sharing the channel bandwidth (a) raises the question of whether
reservations are made on a peak or average basis. If N is small, we should use peak allocation, but for large N, we can use average allocation. The law of large
numbers states that N needs only to be about 50 for an average allocation to be acceptable. Buffer pools can be partitioned (b) or shared (c)

To ensure the channel is overloaded at a more realistic rate of once per year, the headroom above the

mean is roughly
1ms

=32x10"° = headroom=3.2
lyear

0‘001headroom —

Hence, a channel of 3.2 times the mean aggregate rate is sufficient to handle peak demands. This is
3.2 Mbps, and the effective bandwidth of each of the 10 participants is 0.32 Mbps.

Note these overloads are likely to cause a critical fault only in a hard real-time system that has no
mitigation mechanism. In most other systems, there are recovery techniques at many layers of the
system structure, ranging from FIFO queuing and link-level flow control to a human reboot. An
example hard real-time application is the output stage of a television system that is broadcasting a live
stream. This offers no opportunity for error recovery, but a tiny glitch once per year is a reasonable
design margin.

If two or more sources of traffic are known to be highly correlated, statistical multiplexing cannot be
used. Such sources should be considered as a single source with aggregated peak and mean statistics.
The effective bandwidth will then correctly apply to some number of aggregated sources sharing a
resource, provided they are truly independent.

Figures 4.7(b) and (c) illustrate another benefit of multiplexing. Given a resource, such as packet
buffers, it is obvious that a shared pool behaves better than a pre-partitioned pool in terms of
effective utilisation. A pre-partitioned pool will run out of resource at some point although there is
free resource in other partitions. Combined with flow control, this can be a useful aspect of a
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load-balancing or anti-hogging feature, but on its own, it offers no benefit and should be avoided to
allow more effective use of the resources.

As mentioned, a monolithic server performs better than a number of smaller servers that together
have the same total capacity. Consider the M/M/1 system with a monolithic server loaded to
utilisation p. The average service time is W = Wqyeue + Wserver = p/(1—p)/p. If instead there were 10
smaller servers, each with service rate 1/ 10, the system capacity is unchanged. Consider the best
case wWhere the servers are evenly balanced; each will have the same utilisation as the monolithic
server. If customers are not allowed to jump queues between servers, the same formula for W applies
with the same value of p, but because p is 10 times smaller, customers experience a 10 times longer
service time, 10W. In a better design where customers are allowed to jump between queues, the
monolithic server is hardly better under heavy loads, but for light loads, the average service times are
significantly shorter. This is because the queuing delay is greater than the server time for heavy loads
and less than the server time for light loads.

These basic aspects of multi-server behaviour are important when considering what mixture of
processor cores to use in a SoC design. Equations from queuing theory are helpful when creating a
high-level ESL model of a SoC. One modelling technique is to replace queue details with immediate
service and simply add on a timing correction computed from the Wgeue formula (Section 5.2.1).

4.3.4 QoS Policing
A leaky bucket policer is the standard mechanism for regulating peak and average rates of flow of
packets or flits over an interface.

Figure 4.8 shows QoS policing applied to a queue. The queue can be regulated on either the input or
output with output being preferable for a queue that is not shared with other traffic classes. The
arrival gate either receives a packet and puts it in the queue or discards it by throwing it on the ground
(togging), generating a togged packet. In a networking context, if a packet arrives at a full queue, at
least one packet has to be togged, and with a simple FIFO queue, it would be the most recently
arrived. In a SoC context, with backpressure being possible through the handshaking system, stopping
a packet from arriving is also commonly used. The output gate policer will cause packets to
accumulate in the queue when the arrival rate is faster than allowed.

Each policer has a number of rate-limiting channels. Using two channels to police a flow is common,
and the two channels, respectively, police the peak and mean rates. Each channel has one state
variable (a value that changes over time), the credit, which must be greater than zero for the channel
to authorise an operation. Each channel also has two parameters that are set up by the controlling
host. If there is no traffic, credit accumulates while it is less than the burst_tolerance. It builds up at
therate set by credit_rate. The pseudocode in Figure 4.9 outlines an implementation of one
channel, although hardware implementations are commonly found, such as in the QoS-301 IP block
from ARM. If the burst_tolerance is set to unity, the regulator controls the minimum inter-packet
spacing, which is the peak rate. The credit can be Boolean for this case and the implementation can be
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Figure 4.8 A policed queue showing both input and output regulators, although commonly only one site would be policed. Each policer has a number of rate
channels (e.g. three are shown for the input site)

int burst_tolerance, credit_rate; // Set up by PIO
int credit; // State variable
void reset() // Complete setup
{ credit = 0;

register_timer_callback(crediter, credit_rate);
}
void crediter() // Called at 1/credit_rate intervals
{ if (credit < burst_tolerance) credit += 1;
}
bool police() // Check operation currently allowed
{ if (credit==0) return false;

credit -= 1;

return true;

}

Figure 4.9 Essence of a software implementation for one channel of a generic traffic policer or regulator

hardwired to allow one of the channels to support this common, degenerate setting. The product of
burst_tolerance and credit_rate determines an averaging interval over which the mean
credit_rate cannot be exceeded. The illustrated police () operation returns true if an operation is
allowed at the current instant. As shown, it also decrements the available credit if the operation is
allowed, although a multichannel implementation must check that all channels allow the operation
before decrementing the credit for each of them.

Additional policing channels are sometimes used. Implemented in hardware, they consume energy
and area but do not give rise to a performance penalty. Beyond the peak and mean rates, a third
channel can be used to set a longer-term average limit, or channels may be flexibly assigned to
different policing points using a configuration matrix. For instance, separate channels may be used for
the peak read and peak write rates, with a shared average-rate channel. Another form of policing
channel is independent of time and just counts events. A channel to control the maximum number of
outstanding transactions has its credit debited when an operation starts and re-credited when the
response is received. Starting a new transaction is blocked while the credit is zero.
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4.4 Design Trade-offs

Any design process involves a myriad of design decisions at small and large scales. The left plot in
Figure 4.10 has two principal design axes: parallelism and clock frequency. System throughput is
increased by advancing in either direction, when possible. Ideally, their product defines contours of
constant execution design for a task. Higher parallelism leads to a greater throughput at the cost of
more silicon area. The power supply voltage and energy use, which are related to clock speed, are
affected, as discussed in Section 4.6.1. However, higher clock frequencies require a superlinear
increase in energy. Likewise, a higher throughput per processor core requires a superlinear growth in
area, as given by Pollack’s rule (Section 2.1.1). However, depending on the nature of the workload, the
available parallelism may be restricted, so the ability to use a greater area at a lower clock frequency
can be limited. A third dimension is the efficiency of hardware: bespoke hardware structures, such as
mask-programmed (or FPGA) accelerators (Section 6.4) are far more energy efficient than

programmable structures such as processor cores and should be deployed if Amdahl’s rule indicates
that there is a performance benefit.
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Figure 4.10 Abstract views of the principal axes that span the SoC design space for a task. Parallelism can be traded for clock frequency (left), which shows
two design points. At a given clock frequency, the silicon area (and parallelism) can be traded for execution time using a time/space fold/unfold (right)

The right-hand plot illustrates the trade-off between silicon use and throughput. The fold/unfold
transformation (Section 4.4.2) for a task is an automatic or manual alteration to the number of
processors used. Alternatively, it can alter the structure of an individual subsystem to change the
degree of parallelism without changing the clock frequency. Clearly, the clock frequency can also be
adjusted, so two clock frequencies are illustrated. (There are intermediate design points at all clock
frequencies, but these are not shown for clarity.)

Many of the trade-offs can be summarised with basic analytic models that demonstrate interesting

interactions between high-level design decisions. Andre DeHon presented several of these in
interesting publications [1].
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4.4.1 Thermal Design

Heat pipe

Primary heatsink

Figure 4.11 Thermal management of a high-power chip. The primary heat sink makes thermal contact with the chip. A heat pipe is connected to a second
heat sink. There is no other connection to the second heat sink

The largest challenge for today’s SoCs is effective heat dissipation. Thermal circuits work largely like
electrical circuits: they have resistance and capacitance (but there is no thermal equivalent of
inductance). Charge corresponds to heat, voltage corresponds to temperature and capacitance
corresponds to heat capacity. The temperature of a lumped-element node is the integral of the
running difference of net heat flow in or out of it divided by its thermal capacity C. Figure 4.12 shows a
simple thermal dissipation model with one node. Heat is generated by the source on the left at a rate
P J/s (i.e. Pwatts) when it is active. Heat is delivered to the sink on the right-hand side. The sink
models ambient air at temperature To. We assume there is no heating of the ambient environment, so
To remains constant. In the diagram, the thermal node is simply ‘connected’ to the ambient air by a
thermal path of just one link, although a more detailed model of the various structures involved is
usually used. The thermal equivalent of Ohm'’s law is Newton’s law of cooling, which states that the
rate of flow of heat w through a thermal path is the difference in temperatures T, — T divided by the
thermal resistance of the path. Hence, when cooling, the system is governed by the equation

1 dTy

w (Tl - TO) = _Cthermal W

Rthermal

where w is the rate of heat flow between the components (in J/s), which are connected by a material of
thermal resistance Rinermal- Recall that 1 J/s = 1 watt. When the power is off, the thermal node cools
exponentially to ambient temperature. The heat capacity of the thermal node is Cihermal- This depends
on its mass and material and has units of J/K.

Heating Cooling Si
Thermal ink
Source O PJis node e
1
generator (heat capacity C)
Temp=T, Rthermal To
Power = P watts

Figure 4.12 Generic thermal circuit, showing on/off heat source, thermal node and thermal resistance between the node and its heat sink

Silicon chips designed to dissipate more than a watt are mounted on a heat spreader plate that
consists of about 10 grams of copper. The thermal conductivity of copper is exceptionally good at
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401 W/m per degree, so if the spreader plate has a thickness of 2 mm and an area of 1 cm?, the
thermal conductivity to the back of the chip is 401 x 10‘4/0.002 ~ 20 W/K. So, it will convey 10 W for
a small temperature drop of half a degree. Two other components of the thermal path need to be
considered: the silicon wafer itself and the air around the heat spreader.

The thermal conductivity of silicon is about 130 W/m per degree. The electronics on the top of the
silicon chip are a wafer thickness away from the spreader plate on the back of the chip, which is about
1/3 mm. Uniform electronic heating of 10 W will cause the topofa 1 cm? chip to be 0.25°C hotter
than its backplate, but if most of the heat is dissipated in just 10 per cent of the silicon, as may be the
case for a typical SoC, the temperature difference rises to 2.5°C. The temperature at the top affects
the behaviour of transistors and is known as the junction temperature, denoted T,. For everyday
commercial chips, design margins normally allow a maximum T, of about 100°C. Given the thermal
path to the outside of the chip, this allows an upper ambient temperature of 70°C to be specified.
Medical, military and aerospace applications may require chips to operate correctly for a much wider
ambient range, for example, as large as —40 to +125°C.

Packaged chips are cooled using free air, forced air, heat pipes or pumped liquids. Depending on the
size of the heat sink, a free-air cooling arrangement will dissipate up to 1 W per degree rise above
ambient. With fan-forced air, twice as much heat can be extracted. With water or glycol cooling,
massive amounts of heat can be extracted, resulting in effective thermal resistances of more than
100 W/K. For handheld devices using free-air dissipation, the rise in case temperature must be less
than about 6-8°C before it becomes uncomfortable to hold, limiting power use to roughly the same
number of watts.

One gram of copper has a heat capacity of 2.6 K/J, so a 20-gram heat plate will rise by 0.13°C for each
joule stored. If it absorbs 10 W for 10 seconds, it would rise by 13°C in the absence of a heat
dissipation path.

Like its electrical equivalent, the thermal time constant of a system is the time for its temperature to
decay to 1/e = 0.368 from ambient and is given by the product of the heat capacity and the thermal
resistance. For our example, this is

Thermal capacity ~~ 52J/K

Thermal conductance = 20W/K = 2.6seconds

Thermal time constant =

Hence, techniques such as computational sprinting (Section 4.6.10) can use a peak power much
greater than the average power use, provided there are gaps every few seconds to allow the chip to
cool down after each burst.

It is common for an embedded temperature monitor to be incorporated somewhere on a chip. The
diode V/I curve given by the Shockley equation depends strongly on the temperature term. This
enables T, to be cheaply and accurately measured given suitable analogue support circuits. Operating
system governors can typically sense a reading via an ADC channel. The channel can be hardwired
into the DVFS controllers (Section 4.6.8) as a thermal throttle (Section 4.6.10) or an overload
protection mechanism.
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Heat is also extracted from a SoC via its wired connections, which are made of aluminium. Although
aluminium has twice the thermal resistance of copper for the same geometry, the power wires and
signal nets connect directly to the top of the chip and some have fully metallic connections to the
heat-generating transistors. Hence, they provide an additional heat extraction route that should be
considered in detailed modelling.

4.4.2 Folding, Re-timing and Recoding

As was summarised in Figure 4.10, a principal design trade-off is between high performance and low
power. The time/space fold and unfold operations trade execution time for silicon area. A function
can be computed with fewer clocks by ‘unfolding’ it in the time domain, typically by loop unwinding
and predication. The following pair of RTL-like code fragments illustrate the transform. The left-hand
fragment denotes a runtime loop that uses a single adder and multiplier whereas the right-hand
fragment shows the unwound loop that uses three times more hardware. The predication step is the
insertion of the if statements.

LOOPED (time) option: UNWOUND (space) option:

for (i=0; i < 3 and i < limit; i++) if (0 < limit) sum += datal[0] * coef[j];
if (1 < limit) sum += datal[1] * coef[1+j];
if (2 < limit) sum += datal[2] * coef[2+j];

sum += datal[i] * coef[i+j];

Successive loop iterations interact using the ‘+=" operation. Addition is an associative operator. In this
context, it is said to perform an associative reduction from a vector to a scalar (Section 6.9.1). If the
only interactions between loop iterations are outputs via such an operator, the loop iterations can be
executed in parallel. On the other hand, if one iteration stores a variable that affects the next iteration
or determines the loop exit condition, then the unwinding possibilities are reduced. Given that
multiplication tends to be a pipelined operator at the hardware level for any significant word size, the
above example is an oversimplification in terms of input to a low-level RTL logic synthesiser

(Section 8.3). High-level synthesis tools (Section 6.9), however, can operate from this style of coding,
deploying pipelined implementations of the arithmetic operators. High-level tools generate ancillary
logic that is needed to sequence the operands correctly to the multiplier instances. Some such tools
will also automate the decision about whether to unwind the loop whereas others will perform loop
unwinding based on user annotations called pragmas.

Critical Path Timing Delay and Pipelining

Meeting the timing closure is the process of manipulating a design to meet its target clock rate (as set
by a marketing department, for instance) (Section 8.12.16). A design can be re-timed with and
without changing the state encoding of the existing state flip-flops. Re-timing is the process of
modifying the sequential behaviour of a circuit (i.e. its next-state function) so that it meets timing
constraints. Adding a pipeline stage increases the number of states without recoding an existing
state. Inserting a pipeline stage is the go-to manipulation.
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Figure 4.13 Primary timing characteristics of a D-type flip-flop (left). Typical nature of a critical path in a synchronous clock domain indicating how the
maximum clock frequency (F) is calculated (right)

The maximum clock frequency of a synchronous clock domain is set by its critical path. Figure 4.13
shows the general nature of a critical path. The output of one flip-flop in a clock domain feeds through
a chain of combinational gates and arrives at the D-input of the same or another flip-flop in the
domain. One of the paths of this nature must be the slowest. Several, very similar paths may compete
to be the slowest depending on the PVT variation (Section 8.4.4), but one will be dominant at any
instant. The slowest path of combinational logic must have settled before the setup time of its
destination flip-flop starts. As shown, the maximum clock frequency is the reciprocal of the path
length. If a higher frequency clock is set, the subsystem is said to be over-clocked and will be
unreliable. Depending on the engineering margins, it may fail and crash in certain PVT corners. The
hold time requirement is an ancillary timing specification that is important if the output of one flop is
directly connected to the input of another, such as in a shift register. The D-input must be held for at
least the hold time after the clock edge. The clock-to-Q propagation delay must be greater than the
hold time for such shift register structures to be valid.

As noted, pipelining is commonly used to boost system performance. Introducing a pipeline stage
increases latency but also shortens the critical path and hence, raises the maximum clock frequency
(Figure 4.14). Fortunately, many applications are tolerant to the processing delay of a logic subsystem.
Consider a decoder for a fibre optic signal. The fibre might be many kilometres long and a few
additional clock cycles in the decoder would increase the processing delay by an amount equivalent to
a few coding symbol wavelengths, e.g. 20 cm per pipeline stage for a 1 Gbaud modulation rate.
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Figure 4.14 A circuit before (top) and after (bottom) insertion of an additional pipeline stage

Same logic function - pipelined version.

Pipelining introduces a new state but does not require existing state flip-flops to change meaning. On
the other hand, flip-flop migration, as illustrated in Figure 4.15, does alter the encoding of existing
states. Migration may be manually turned on or off during logic synthesis by typical RTL compiler
tools. Migration exchanges the delay in one path for a delay in another to balance delay paths. A
well-chosen sequence of such transformations can lead to a shorter critical path overall.

Figure 4.15 Flip-flop migration. Two circuits that behave identically but which have different state encodings

Although migration is very useful and is automated in logic synthesisers, it cannot always be applied.
For instance, in the following RTL example, the first migration is a local transformation that has no

global consequences:
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Before: Migration 1: Migration 2 (non causal):
a <= b + c; bl <= b; c1 <= c; ql <= (dd) 7 (b+c): 0;
q <= (d) ? a:0; q <= (d) ? bl+cl:0; q <= qi;

The second migration, which attempts to perform the multiplexing one cycle earlier, will require an
earlier version of 4, here termed dd, which might not be available (e.g. if it were an external input and
we need knowledge of the future). An earlier version of a given input can sometimes be obtained by
delaying all the inputs, but this cannot be done for applications where the system response time
(in-to-out delay) is critical (such as generating the not-ready handshake signal in older bus protocols).
Further problems that prevent migration from being used are:

® Circuits containing loops (proper synchronous loops) cannot be pushed further than the loop
circumference, which can be quite short. An example is the control hazard in the RISC pipeline
conditional branch, which is short (Section 2.1.4).

® External interfaces that do not use transactional handshakes (i.e. those without flow control)
cannot tolerate automatic re-timing since information about when data are valid is not explicit. A
related problem is that in standard RTLs, even when the interface is transactional, the logic
synthesiser does not understand the protocol. This has been solved in higher-level design
expression languages, such as Chisel (Section 6.8.3) and Bluespec (Section 6.8.5).

= Many structures, including RAM and ALUs, have a pipeline delay (or several), so the hazard on their
input port needs resolving in a different clock cycle from hazards involving their result values.
Again, this information is not manifest in RTL descriptions and so the transformation cannot be
automated during logic synthesis.

However, re-timing can overcome structural hazards (e.g. the writeback cycle in a RISC pipeline,
Section 2.1.4).

Recoding without changing the number of flip-flops can also be helpful. Logic synthesiser tools can
convert from binary to Gray or one-hot coding. Gray coding is a binary number ordering such that two
successive values differ in only one bit. For instance, a 3-bit Gray code goes 000,001,011,010, 110,
111, 101 and 100. Although originally designed for mechanical systems, such as shaft encoders,
Gray-coded digital logic is intrinsically safe for clock domain crossing (Section 3.7.3). Automatic
recoding to Gray values causes a long bus to take consume less dynamic power (Section 4.6.2) than if
driven by a binary counter since it has fewer transitions. Another recoding is to unary or one-hot
coding. These are the same thing. They use 2" bits to encode an n-bit binary number with just one bit
being asserted for a given count value. The next-state logic for a one-hot coded counter is
exceptionally simple, leading to very short critical paths. Also, no binary-to-unary output decoder is
required in applications that need to command different operations on different count values.
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Figure 4.16 shows a Johnson counter that divides by five using three flip-flops. A Johnson counter
uses a hybrid of one-hot and Gray coding with a maximum of 2n states out of an n-bit word being used.
It is based around a shift register and has minimal next-state logic. Hence, this design is always used
when the fastest possible counter is required, e.g. in GaAs logic for microwave radio-frequency
synthesisers.

Automatic recoding from binary to one of these other forms is often performed by a logic synthesiser
(Section 8.3.8). Large finite-state machines (FSMs) are commonly recoded so that the output function
is easy to generate. This is critical for good performance with complex sequencers, as used, for
instance, in HLS. In a flip-flop-rich technology, such as an FPGA, there is zero effective area overhead
using such encodings, just a speed and energy benefit. A trivial recoding used for some target cell
libraries is to invert logic polarity in a flip-flop. This enables a reset to act as a preset and flips the
starting value held in the flop. Despite its benefits, automated recoding has the disadvantage that it
makes low-level debugging more complex.

4.5 Design Trade-offs in Memory Systems

Memory systems frequently need to be multi-port, meaning that a given storage location is accessible
to some number of transaction initiators. The underlying hardware implementation of a simple SRAM
can be single or dual ported (Section 2.6.5), but often a greater number of effective ports are required.
Also dual-ported RAM has an area overhead, which means it is commonly not a good solution.
Whether cached or not, a memory system will typically consist of an aggregation of individual RAMs.
In this section, we discuss aggregation techniques for homogeneous RAMs. The case for using
heterogeneous RAMs that vary in terms of clock speed and capacity for hierarchic memory systems is
made in Section 6.6.1.

Sequential Consistency

An important design decision is what level of sequential consistency to provide. If some reads and
writes to nominal memory are actually served from intermediate caches, write buffers or other
forwarding paths in the interconnect, it is possible for the relative order of writes to different
locations to appear differently from different points of view. This is the sequential consistency
problem. A typical programming paradigm is for one initiator to write data to a buffer in shared
memory and then to update a flag, pointer or counter to reflect that the buffer is ready to be
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inspected by other initiators. Figure 4.17 illustrates the essence of this situation. Here, the flag is the
first word of a shared memory buffer being non-zero.

Thread 1 - Requestor | Thread 2 - Server
|
S | while(true)
buffer[1] = operandi; | {
buffer[2] = operand?2; | if (!buffer[0]) { yield(); continue; }
|
|
|
|

write_fence(); read_fence();
buffer[0] = COMMAND; handle(buffer);
buffer[0] = 0;
}

Figure 4.17 Two code fragments using message-passing in shared memory with explicit memory fences. The yie1d () call could be to the suspend primitive
of the operating system scheduler. Alternatively, if running on bare metal, it is a dedicated instruction (called YIELD in the Arm ISA) that interacts with
hardware hyper-threading if present

However, in a memory system that does not observe sequential consistency, an observer might see
erroneous data if it reads the buffer contents after seeing a change to the first word although the
writes to the remainder of the buffer are not yet visible. An equivalent problem arises if reads are
serviced out of order. Three primary system-level models that address sequential consistency are:

1. Ensure that all shared memory components observe strict sequential consistency.

2. Use a weaker model, known as processor consistency, in which all readers see items in a buffer in
the same order as they were written by a single initiator but see an arbitrary view of how writes
from different initiators are interleaved.

3. Use relaxed consistency, for which the programmer must insert explicit fence instructions.

A memory fence instruction, also sometimes called a barrier, is inserted by a programmer to
constrain the order of memory operations. The three main forms are read fences, write fences and
everything fences, which are the same as a read fence followed directly by a write fence or vice versa.
A write fence ensures that for any data written before the fence, the data are committed to a store
before any data from subsequent writes. Likewise, a read fence ensures that for all reads issued
before the fence, the reads have completed before any subsequent read. Hence, as shown in the
above example, a write fence should be issued between writing the last word of data to the buffer and
writing the flag that acts as the transaction commit. Equivalently, a read fence can be issued between
checking the flag and reading the data from the buffer. Real-world busses, as discussed in Chapter 3,
support a broader class of bus transactions, beyond just reads and writes. Hence, the operand to a
generic fence instruction is a square matrix of Boolean flags indicating which classes must complete
before which others.

Memory Bank Arrangements
A single-ported SRAM array presents a structural hazard in that the single address bus can select only
one location at a time (Section 6.3). For a given clock frequency, the data transfer rate per bit of a read
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or write port is fixed at that clock rate. Two basic approaches are used to increase memory
bandwidth: multiple banks and wide words. Smaller SRAM arrays imply simpler and faster decoding
and shorter word-line and bit-line lengths. This reduces access times and increases power efficiency
at the expense of some loss in area efficiency due to peripheral logic. In a multiple bank, different
locations can be accessed simultaneously, whereas just one location at a time can be accessed for
memories with wider words. With banking, concurrent accesses ideally hit different banks, therefore
providing parallelism.

a) Two separate memory channels b) Two memories sharing one channel
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Figure 4.18 SRAM memory bank structures for MCMs (top) with two interconnection patterns inside the SoC (bottom)

Figure 4.18 illustrates typical memory banking arrangements for multi-chip modules (MCMs)
(Section 8.9.1). The SRAM memory is die-stacked on the main SoC, but equivalent considerations
apply to DRAM and on-chip and PCB-level design. Configuration (a) is simple. Each RAM instance has
its own dedicated wiring to the main SoC. This is ideal for use case (c), since each memory channel
needs to be accessed by only one core or other processing element. Configuration (b) has two
memory devices connected to one channel. This reduces the pin and net count but can consume more
dynamic energy than dedicated wiring under low to medium loads due to the greater switched charge
(Section 4.6.1). Also the single-channel structural hazard limits bandwidth to a factor of 1x.
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Figure 4.18(d) also uses external channels but has an on-SoC switch so that unrestricted access is
allowed under an address interleave scheme. Given a uniform, random addressing pattern, the
probability that two locations of interest are in the same bank is inversely proportional to the number
of banks. Hence, more banks are better. With multiple RAMs, the data can be arranged randomly or
systematically among them. To achieve a ‘random’ data placement, some set of the address bus bits
are normally used to select the different banks. Indeed, if multiple chips are used in a single bank, this
arrangement is inevitably deployed. The question is, which bits to use. Using the low bits for a bank
select creates a fine-grained interleave, but tends to destroy spatial locality in the access pattern. The
best bit field to use also depends on whether the memory elements are truly random access. SRAM is
truly random access, whereas DRAM will have different access times depending on which rows are
open. However, even SRAM expends greater energy when switching between bit-cell words
compared with selecting different bit lanes from the addressed word.

If data access patterns are known in advance, which is typically the case for HLS, then data access can
be maximised or even ensured by careful bank mapping. Interconnection complexity is also reduced if
it is manifest that certain data paths of a full crossbar will never be used. In the best cases (easiest
applications), no lane-steering or interconnect switch is needed and each processing element acts on
just one part of the wide data bus. This is basically the GPU architecture.

An architectural technique that offers pseudo-multi-porting is shown in Figure 4.19. Here, two
memory banks store the same data. It can be generalised to any number of so-called mirror copies.
Disjoint loads can happen in parallel, but the stores update all copies simultaneously. This increases
the read but not the write bandwidth. However, since most data are read more often than written, it
works. The advantage of this scheme is that fewer physical ports are needed for each memory bank.
On the other hand, the obvious disadvantage is the area and power overhead of requiring multiple
memory banks, since the number of memory banks is proportional to the number of read ports
required.

4 ™
RDATAO
o ADDRO . > WDATA 1
L WDATAQ ~ > ADDR
—*wen
o wen0 — en
O —_—
o en0 —;
S ..y > ! RAMO
ackl «— > —
wenl — RAM 1
d ent — / . RDATA1
- ADDR1— WDATA >
Q  wpATA1 - ADDR
MUX > wen
clk — ——{en
~ %

Figure 4.19 Pseudo-dual porting of RAM (using write mirroring)
One disadvantage is that arbitration is required, which in turn means that an acknowledgement

reverse handshake is required, as illustrated. This introduces a level of timing crosstalk between the
ports, which does not arise with actual dual porting and which may be a problem for hard real-time
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systems. An alternative approach uses static time-division multiplexing or several successive memory
accesses in a single cycle. However, these approaches are possible only if cache access is much faster
than the clock cycle. This is usually not the case, and hence, this method is not scalable to multiple
ports. Real dual porting is sometimes more suitable for clock-domain crossing, especially if high-level
protocols avoid read/write clashes on a common location such that no low-level mechanisms are
needed to provide a specific resolution semantic.

Design Trade-offs in a DRAM Controller

As described in Section 2.6.6, addresses are sent over a DRAM channel in two halves: row then
column. DRAM is slow to access and certainly does not provide random access compared with
on-chip RAM. A modern PC might take 100 to 300 CPU clock cycles to access a random location of
DRAM since the CPU may clock considerably faster than the DRAM. However, the ratio is often not as
severe in embedded systems that use slower system clocks. Nonetheless, it is nearly always helpful to
put at least one level of DRAM caching on a SoC. This can be associated with CPU cores or part of the
memory controller or both may be used.

A DRAM/dynamic memory controller (DMC) sequences the operations on a DRAM channel. The
DMC controller may have embedded error detection or correction logic using additional bit lanes in
the DRAM. Caches will access the DRAM in localised bursts, saving or filling a cache line, and hence,
cache lines are always arranged to lie within a DRAM row. The controller will keep multiple DRAM
pages open at once to exploit spatio-temporal access locality. The high random-access latency and
writeback overhead of DRAM requires a bank-closing policy in which mainstream controllers look
ahead in a pool of pending requests to assist in deciding when to close a row. Closing a row is also
known as closing a page or deactivation. It is normal to prioritise reads over writes, but for data
consistency, overtaking must be avoided. Alternatively, reads can be served from the write queue.
However, a new request in a previously open line could arrive just after the controller closes it. An
open-page policy does not write back after the last apparent operation on a row has been processed.
It keeps the bank open in case another operation on that row shortly arrives, up to a timeout duration.
A closed-page policy writes back when there is no work to do. This allows precharging of the bit lines
and reduces the latency of the next operation to use that bank. It is best if clients can tolerate
responses out of order and hence, the interconnect must support tagged transactions (Section 3.1.4).
In reality, DRAM banks are often partitioned into bank groups. Within a bank group, power supply
and noise issues dictate additional timing constraints on successive operations, which is a further
dimension to be considered in access scheduling.

DRAM energy use is discussed in the chapter on ESL, Chapter 5. A major use of energy is for the static
power in the high-speed PCB driving and receiving pads. These pads are collectively called the DRAM
physical interface (PHY). Each row activation, deactivation, data transfer or refresh consumes a
quanta of dynamic energy.

Figure 4.20 shows the structure and board-level nets for a 32-bit DRAM channel. Four separate

column address select (CAS) nets are used so that writes to individual byte lanes are possible. For
large DRAM arrays, there will also be multiple row address select (RAS) lines that serve as the rank
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Figure 4.20 Typical structure of a 32-bit DRAM controller connected to DRAM devices. The on-SoC controller manages a DRAM channel with one rank
made of eight individual DRAM chips. Each chip has eight banks with four bit planes. Each bit plane has 212,212 pits. ADRAM is typically made available
to various on-SoC subsystems using a multi-way bus multiplexor

address decode. These help to save power by not sending a RAS to devices that will not be given a

following CAS. The controller essentially has two halves. The left half keeps track of outstanding work
and caches recent results. The right half keeps track of which rows are open in each bank using a
scoreboard and generates carefully timed control-signal waveforms. A modern DRAM controller has
an elaborate boot-up procedure that involves:

® if present, reading data from an on-DIMM serial presence detect (SPD) ROM that contains the

electronic data sheet for the device

= setting the supply voltage and data clock frequency

= calibrating clock and data lines by configuring programmable delay lines and termination
impedances

" setting up many internal registers inside the DRAM devices that control the burst addressing and
mode wrapping policy

(precharge) times
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= setting up hardware timers to meet the refresh rate targets.

Given the complexity of the task, a controller may have a tiny CPU to interrogate SPD device data and
gets the DRAM operating before the main SoC bootloader starts.

In the worst case, the DRAM refresh overhead has a 1 or 2 per cent impact on bus throughput. For
example, if 1024 refresh cycles are needed over a 4 ms interval, then a refresh operation is needed on
average every 4 ps. This might take 100 clock cycles or so. However, as long as each row is refreshed
at some point in a 2 ms slotted time window, the specification is met. Most refresh operations can be
slotted in when no other commands need to be issued.

Given the multi-level address structure of a DRAM, which has fields row, column, bank, rank and
channel, another design consideration is how a physical address is mapped to the various physical bits
making up these fields. This alters how the memory layout affects performance. Most DRAM
controllers are programmable in terms of this physical address interleave. A baseline example, shown
in Figure 4.21(a), starting with the most significant bit in the physical address space, uses the order:
row, bank, column, burst offset andbyte lane. The fields channel and rank, if present, are the most
significant. The field byte lane is always at the bottom, as defined for a byte-addressed memory
space. For the spatial locality, burst offset must come next and column must be lower than row.
However, having bank lower than column allows interleaving of accesses to open pages, which is
sensible when the system workload has a large amount of activity localised to one large area. In
arrangement (b), bank has been moved as low as it can go without disrupting cache lines and burst
transfers. On the other hand, having bank higher can make sense if the system has various concurrent
active hot spots, such as is typical with heap, stack, code and static segments.

i35 33i32 31{30 17§16 14{13 3i2 0
a) | Chan |Rank (21 Row (14) |Bank (3)| Column (11) |Byte lane (3)|
135 33132 31,30 17116 817 54 32 0
b) | Chan |Rank (21 Row (14) | Hi column (9) |Bank (3)|Lo col (2)|Byte lane (3)|
35 34 32 19} 17 9/ 17 5/4 3i2 0
o) |Rank (21cz| Row (14) |c1| Hi column (9) |co|Bank (3)|L0 col (2)|Byte lane (3)|

Figure 4.21 Three possible arrangements of DRAM address fields within a physical address. In the centre arrangement (b), the bank field is lower than its
naive position in the top arrangement (a). This improves load balancing over banks, but the field is not moved so low that a cache line or burst transfer is split
over banks. The rank and channel fields can also be moved lower. Arrangement (c) shows a channel field that has been split and dispersed

If rank and channel are also present, there are more options! Due to spatial locality in access
patterns, address bit behaviour becomes increasingly correlated as the bit number increases.
Arrangement (c) shows one way of spreading out some of the channel bits. There is a further
discussion in Section 6.9.1. Using virtual memory (VM) and its page management policy, the operating
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system can freely redistribute the top bits. For the lower address bits that form the offset withina VM
page, it is possible to use a hardware XOR-based function to whiten the row access patterns.

4.6 SoC Energy Minimisation

A mobile phone battery typically has a capacity of around 10 W h (watt-hours), which is 36 kJ. Energy
in an electronic device gets used in several different ways. For a mobile phone, we might see the
following budget:

= screen backlight: 1to2W
= RF transmissions via the various transmit antennae: up to4 W
= sound and vibrations through the speaker and little shaker motor: 200 mW

= heat wasted in the electronics: upto 5W.

Battery life is very important for portable devices. In data centres, electricity is used both for power
and heat extraction, and generally, the electricity bill is the biggest operating cost. Saving energy in
computing is always a good idea. In this section, we will examine how digital logic uses energy and how
it can be saved.

4.6.1 Power, Resistance and Capacitance

Figure 4.22(a) shows a battery pack for a mobile phone. Strictly, this is not a battery since it has only
one cell, though it contains other components as well. If the external terminals are accidentally
shorted, a fuse prevents excessive heat or fire. A small-valued series resistor acts as a current shunt
for measuring the charge and discharge currents. The voltage across this resistor is measured with an
amplifier in the associated battery monitor electronics. The amount of energy remaining in the
battery is computed by measuring the terminal voltage and integrating the charge and discharge
currents over time. Extra electricity applied to a fully charged cell just creates heat. This condition is
detected by the thermistor, whose resistance varies with the temperature of the battery. Being fully
charged serves as a boundary condition, which eliminates the arbitrary constant arising from
integration over an indefinite period. A complete history of charge and discharge operations may also
be stored to assess battery ageing and to trim the charge state estimator function that is based on the
terminal voltage. The external battery state indication (BSI) connections enable the charge status to
be read remotely by the portable device. A battery also typically contains a data sheet in internal
ROM that identifies the battery model and its characteristics.

When electricity is consumed, the power law, P = VI, states that the power in watts is equal to the
supply voltage (volts) multiplied by the supply current (amps). Power is defined as the rate of energy
use and 1Wis 1 J/s. Also, 1J of energy is 1 C of charge dropping 1V in potential. For the battery
illustrated, the terminal voltage is 3.7 V and the capacity is quoted as 1650 mA h, which is equivalent
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Figure 4.22 (a) Lithium-ion battery for a mobile phone (3.7 V, 1650 mA h, 6 W h or 22 kJ), external view. (b) Typical internal structure. (c) Two sugar cubes

t0 3.7 x 3600 x 1.65 = 22 kJ of energy. For comparison, two standard 4-gram sugar cubes have 32 kcal
of energy, which is about 134 kJ (Figure 4.22(c)).

If aload resistor of 100 Q is applied, as shown, Ohm'’s law gives the external current as
I=V/R=3.7/100, which is 37 mA. The power being used is 37 x 3.7 = 140 mW or 140 mJ/s and the
battery life is 22 x 103/(0.14 x 3600) = 45 hours, which is nearly 2 days.

Power can also be expressed as P = Ef, where E is the amount of energy used in an event and f is the
frequency of that event. For synchronous digital electronics using CMOS, the event of interest is the
active clock edge. In transaction-level modelling (Chapter 5), we assign energy use to each transaction.
Our power estimate is then the sum of all the transaction energies divided by the runtime, which is
also the energy of each transaction multiplied by the average frequency at which it takes place.

4.6.2 Dynamic Energy and Dynamic Power

Power use in digital electronics can be partitioned into static power use and dynamic power use.
Dynamic power is defined to be the electricity usage rate that arises in proportion to how often a net
changes state. The static power is the remainder: it is unaffected by net-level activity. In modern
CMOS devices, dynamic power tends to exceed static power by a factor of 3 or 4, but the ratio can
sometimes be much higher by several orders of magnitude. The high-ratio scenario used to be the
only design point for mainstream CMQOS technology, but today that design point is used only in
specialised low-leakage, low-frequency CMOS technologies that are targeted at long-lifetime,
battery-powered applications.

Figure 4.23 is an electrical equivalent circuit for modelling the dynamic power of a CMOS SoC. A
switch is used to alternately charge and discharge a capacitor through a resistor. On both the charge
and discharge halves of the cycle, the resistor dissipates energy as heat. The resistance R partly
determines the time constant t = CR. If the time constant is sufficiently shorter than the switching
cycle, T « 1/f, the capacitor will become fully charged and discharged in each cycle. The energy
dissipated on discharge is the energy in the capacitor, which is E = CV2/2. By symmetry, the energy
dissipated in the resistor during the charge phase is the same amount, so the total energy use per
cycle is CV2. The power used is P = fE = fCV2. In a real SoC, not all of the nets change state every clock
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Figure 4.23 Lumped-element electrical equivalent modelling of dynamic power use of a CMOS SoC. The energy drawn from the battery each clock cycle is
essentially ‘wasted’ as heat in the distributed resistance of the active parts of the SoC

cycle: some parts of the chip may be in power-down mode and other parts may be switched on but not
doing anything. So, in this electrical equivalent circuit, the switch models the system clock and the
capacitor models the average amount of capacitance that is discharged each clock cycle. The general
rule is that energy use is proportional to clock frequency and quadratically proportional to supply
voltage. This second effect is the primary motivation for moving digital systems from the 5-V supplies
used between 1950 and 2000 to the lower voltages (e.g. 1.1 V) used today. Also, note, somewhat
counter-intuitively, that the energy used does not depend on the value of the resistance. Inreality, the
resistor is the effective sum of resistive effects in the wiring and the transistors. Both forms of
resistor areillustrated in Figure 4.24.
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Figure 4.24 A generic CMOS invertor structure shown with explicit parasitic resistances and lumped-equivalent output loading. This illustrates the primary
electric paths in CMOS logic

Second and less-significant contributors to dynamic power use are short-circuit currents. These are
also known as crowbar currents (named after the so-called crowbar power protection mechanism
that permanently shorts the power rails with a heavy-duty thyristor under error conditions). A
short-circuit path is visible in Figure 4.24. The short-circuit current flows directly from the supply to
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ground at any time that both the P and N transistors are simultaneously conducting. In CMQOS, this
theoretically never happens: one or the other transistor is off at any instant. In reality, the transistors
are not digital switches that are either on or off; they are analogue amplifiers that gradually transition
between strongly conducting and very weakly conducting. When the input voltage is between logic
levels, both transistors are partially conducting and the so-called short-circuit current flows. Every
time the input net transitions, it passes through an intermediate voltage. This can be especially bad
with tri-state busses, which, in a basic design, are floating when not being used and can float to an
intermediate voltage causing significant short-circuit currents. Tri-state busses are normally totally
avoided in modern SoC designs. If they are used, the floating state must be avoided using a bus holder
on each net (also known as a bus keeper). A typical bus holder structure is shown in Figure 4.25. A
reset-set (RS) latch is connected to each tri-state data line. An RS latch has a very weak output drive,
due toits implementation, which uses small transistors, and so is simply overridden when one of the
primary drivers controls the bus line. Of course, there is still a small short-circuit current each time
the bus holder’s weak drive is overcome, but, if the transistors are optimised for speed, this is much
lower than the short-circuit current possible in one of the sensing buffers.

SN NN

Tri-state Tri-state Buffers liable to high
driver driver short-circuit currents Bus holder

Figure 4.25 A tri-state data line showing driving gates, sensing buffers and a bus holder (or keeper). The bus holder has a weak output driver, denoted ‘W',
which acts like a series resistor to reduce the output current during transient bus fights (Section 1.1.2)

Clearly, the dynamic power used by a net depends on its activity factors, such as the probability of
being at logic one and its toggle rate. For a synchronous system, the toggle rate is the fraction of clock
cycles on which it changes value. The maximum toggle rate for a flip-flop output is 100 per cent, but a
flip-flop that changes to a new, uniform random value every clock cycle has a toggle rate of 50 per
cent. The clock net itself has a toggle rate of 200 per cent and figures above 100 per cent are also
possible for double-data rate busses, as used for DDR DRAM. Simulators can measure activity factors
and report them in a switching activity interchange format (SAIF) file (Section 5.6.1), which can be
imported into a power modelling tool.

4.6.3 Static Power Use

Figure 4.24 also shows the two leakage paths, indicated by the channel leakage parasitic resistors. A
transistor that is supposedly off still conducts to some extent. The current it carries is called static
leakage current. P and N transistors typically have the same off-resistance, so the same static current
passes regardless of the dynamic state or amount of dynamic activity in the circuit. The first
generations of CMOS technology had exceptionally low leakage currents; thus, static power
consumption could be neglected during design. They used relatively large transistors and supply
voltages in the 5-15V range. However, as noted earlier, the V2 term for dynamic energy has
motivated significant reductions in supply voltage. Lower voltages mean that an off transistor is less
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off than it was with higher voltages (see Eq (4.1) in Section 4.6.6) and hence, has higher leakage. With
modern technology, a trade-off exists in the choice of dopant levels and other aspects of transistor
geometry. These affect the threshold voltage V7 for transistor switching. This is the smallest gate
voltage at which (additional) current starts to flow in a straightforward, enhancement-mode
field-effect transistor (FET) (beyond the leakage current). In the simple switch view of a FET, when the
gate voltage is above this level (for an N-type transistor), the device is on and when below, it is off. The
logic swing must comfortably exceed the threshold voltage. With lower supply voltages, lower
threshold transistors must be used. However, a low threshold means the transistors are less turned
off when they are supposed to be off; hence, there is higher leakage. A higher threshold means the
input must swing further up before the transistor turns on, which is poor switching performance and
hence, there are longer logic delays. Equivalent arguments apply to the on-resistance; a lower
on-resistance overcomes the load capacitance more easily, resulting in faster logic, but larger or faster
transistors leak more.

A large number of techniques have been used to tackle the leakage versus performance trade-off. A
simple approach is to use a single design point over the whole SoC and aim for static power to be
about half as much as dynamic power. This is becoming less attractive, since it rapidly encounters
dark silicon constraints (Section 8.2). A mainstream approach is to use two different transistor
designs. Low-threshold, leaky transistors are used on the critical paths (Section 4.4.2). These switch
fastest. Slower transistors with less leakage are used elsewhere. This is a static approach; these
transistors are manufactured with different geometries and dopant levels. Other techniques are
dynamic, such as partial power gating (Section 4.6.10) and dynamic body bias (Section 4.6.10).

4.6.4 Wiring and Capacitance Modelling
Capacitancelis caused by two conductors being close to each other. Capacitance is increased beyond
what would occur in a vacuum due to the relative permittivity of the surrounding material ;. The
wiring capacitance for a pair of conductors with radius a and separation d is given by

_ JTeQgEr

cosh™(d/2a)

in farads per metre (F/m). For VLSI nets for which the spacing is the same as their width (i.e. d = a), the
denominator is unity. If the insulator is silicon dioxide (e, = 4), as used in VLSI, the capacitance is
roughly 100 pF/m. At sub-centimetre chip dimensions, expressing this in units of 0.1 pF/mm or
0.1 fF/um per net is more useful. If capacitance arises unintentionally, we refer to it, interchangeably,
as stray or parasitic capacitance. Capacitance negatively contributes to both energy use and delay
performance. Detailed analogue simulations that include capacitance and the transfer characteristics
of atransistor are used to study circuit performance. An example using SPICE is presented in
Section 4.6.7. However, this level of modelling is slow to run and unnecessary. The basic behaviour of
digital logic can be adequately understood by lumping all the capacitive effects and then all the delay
effects. These lumped figures are then used in simple formulae that also contain detailed derating

1. Strictly speaking, we are referring to mutual capacitance.

186



Chapter 4 | System Design Considerations

factors that have been carefully analysed for the nine PVT corners. The PVT corners relate to a
cuboid space defined by variations in wafer processing, supply voltage and operating temperature
(Section 8.4.4). This space has eight corners and the ninth point (or corner) is the nominal operating
point in the centre of the cube.

Both the power consumption and effective delay of a gate driving a net depend mainly on the length
of the net being driven.

Driven

c L / gates \
=+

TF

input

T 7
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|
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Gate
Track to substrate

capacitance proportional -
to total track length (area)

Figure 4.26 Logic net with a single source and three loads, showing tracking and input load capacitances

In CMOS VLSI, the main sources of capacitance are between the gate and channel of a FET and
between a net and other nets in the wiring. Figure 4.26 shows a typical net that connects a source
gate to three load gates. To change the voltage on the net, the source must overcome the net’s stray
capacitance and the input load capacitance. The fanout of a gate is the number of devices that its
output feeds. (The fanout is three in the figure.) The gate will normally come from a standard cell
library (Section 8.4.1). The net’s stray capacitance is the track-to-substrate capacitance, which is a
library constant times the track area. For constant-width nets, the area is proportional to length.
Precise track lengths are known only after placing and routing. As shown in Figure 1.13, this
information can be fed back into a high-level model in a back-annotated post-layout simulation
(Section 8.7.4). Before synthesis or before layout, tools can predict net lengths from Rent’s rule and
RTL-level heuristics (Section 5.6.6). The load-dependent part is the sum of the input loads of all the
devices being fed. These do not depend on the layout and so can be determined earlier in the
back-end design flow.

In digital modelling of non-clock nets, the following principal simplifying assumption is commonly
used: All parts of the logic net change potential at exactly the same time. The loading effects are
then all absorbed into the delay model of the driving gate. This model is accurate when the output
resistance of a gate is significantly higher than the net track resistance. For example, the points C, D
and E in Figure 4.26 all change from 1 to O at the same time. Due to the AND functionality, the
switching instant is a fixed pre-computed delay after either A or B goes from 1 to 0. The driving fixed
device delay is computed with a lumping formula:

Device delay = (Intrinsic delay) + (Output load x Derating factor)
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The output load is the sum of the wiring and gate input capacitances. The derating factor models the
output strength of the driving gate and is taken from the gate’s data sheet. The formula model
estimates the delay from the input to a gate, through the internal electronics of a gate, through its
output structure and down the conductor to the input of the successor gates. It effectively has three
terms that are summed:

1. The internal delay of the gate, termed the intrinsic delay.
2. The reduction in speed of the output stage, due to the fanout/loading, termed the derating delay.
3. The propagation delay down the conductor.

For clock nets, which must be specially designed with low skew and known delays, more detailed
techniques are used (Section 4.9.5).

The on-chip net delay depends on the distributed capacitance, inductance and resistance of the
conductor material and the permittivity of the adjacent insulators. A detailed computation, using the
Elmore model for nets that feed more than one destination, was presented in Section 3.1.1. For circuit
board traces, the resistance can be neglected and the delay is just the speed of light in the circuit
board material. Most PCBs are made from FR-4 fibreglass, which has a relative permittivity of e, = 4.7,
so the propagation speed is about 1/v4.7 = 0.46c, which is 138 m/us. On the other hand, for the
shorter nets found on a chip, the propagation delay is not a free-standing term in the above formula
and its effects are bundled into the output derating, since a net that is longer has a larger capacitance.

To attain the maximum performance from logic, simple models of gate delay may have over
conservative design margins. Today, the delay can be characterised additionally by the slew rate of
the arriving signal, as described in Section 8.4.6. Moreover, the resistance of very thin nets, which are
sometimes used in highly dense wiring, contributes to the effective delay. Moreover, if such a net
divides to feed multiple destinations, the difference in delay down each path can occasionally be
significant. The EImore model is readily applied to each section of such a net to obtain a good delay
estimate at the start of a simulation, but the performance of a net-level simulation is reduced by the
greater number of circuit nodes that require modelling.

4.6.5 Landauer Limit and Reversible Computation

In theory, if a computer does not destroy any information, it can be run with no energy. A computation
that does not destroy information is called a reversible calculation, since the input data can be
recreated from the output data. Conventional computer programs are not structured in this way. For
example, once the average value of a list has been computed, the memory holding that list is typically
overwritten with new data and used for something else.

There are theoretical limits on the energy that an irreversible computation requires. However, the
current technology is a long way from these limits in two respects:
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1. We use too much energy representing and communicating bits.

2. We use von Neumann-based computation, which moves data to a centralised ALU, a design that
does not scale well (Section 6.4).

Consider electrical computers:

= |f a computer is built using a network of standard components (such as transistors) and the
interconnection pattern expresses the design intent, then the components must be at different
spatial locations. The computer will have some physical volume.

= |f the components are connected using electrical wires, these nets have capacitance, resistance and
inductance that stop them behaving like ideal conductors. The smaller the volume, the less wire we
need and the better the nets (and hence, computer) will work.

= |f transistors are used that need a swing of about 0.7 V on their gates to switch them reliably
between off and on, then the nets need to move through at least that much potential difference.

As explained (Section 4.6.2), the capacitance of the nets is our main enemy. Given a prescribed
minimum voltage swing, the energy used by switching a wire between logic levels can be made smaller
only by reducing its area and hence, capacitance. Hence, smaller computers are always better.
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4 ... to be invented ...
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Figure 4.27 Dynamic energy use for various technologies

Landauer worked out the minimum energy use per bit [2], in theory, for a computer that deletes data
as it goes (e.g. erasing the old contents of a register when new data are loaded). Computing more
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efficiently than this requires major low-level design changes to ensure that information is never
deleted, taking us towards reversible computing. Reversible logic (e.g. Toffoli logic) can get below the
Landauer limit. Some standard algorithms, such as encryption and lossless compression, are mainly
reversible. The trick is to code in a way that does not delete intermediate results during a
computation. Such techniques may be in wide use within two decades. In irreversible computing, the
traditional approach of wasting the energy of each transition can be countered using techniques like
regenerative braking in electric vehicles. In one approach, the logic runs on AC and returns charge to
the power supply using resonant circuits. Switching transistors close only when they have no voltage
across them and open only when they have no current flowing.

Figure 4.27 shows ballpark figures for dynamic energy use in today’s (2020) sub-28-nm silicon
technology. We see that contemporary computers are about six orders of magnitude above the
Landauer limit in terms of energy efficiency, so a significant amount of improvement is still possible
before we have to consider reversibility. If we make the wantonly hopeful assumption that Moore-like
growth continues (Section 8.2), with technology doubling in performance every 18 months, we could
intersect the reversible computing limit in about 2050, since 1.5 x log, (10°) is roughly 30 years.

4.6.6 Gate Delay as a Function of Supply Voltage

The FO4 delay is often used to represent the performance of digital logic technology. The FO4 delay
is the delay through an invertor that feeds four other nearby invertors (fanout of four). This is
illustrated in Figure 4.28. The FO4 depends on the implementation technology and the PVT
parameters (Section 8.4.4). The variation with supply voltage is particularly important and is exploited
for DVFS (Section 4.6.8) and VCOs (Section 4.9.5). The combinational delay of a particular design can
also be expressed in a technology-independent way by quoting it in units of FO4 delay. Note the ITRS
roadmap in Table 8.2 instead uses FO3 (fan-out of 3) instead of FO4 metric.
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Figure 4.28 Fanout 4 (FO4) delay specification (left) and CMOS logic propagation delay versus supply voltage (right)

As noted earlier, the gate threshold voltage V1 for FETs in a CMOS design is the voltage at which they
nominally switch from off to on. The lowest possible supply voltage to a logic system is bounded by
the threshold voltage. Above this voltage, the logic delay is roughly inversely proportional to the
supply voltage. Accordingly, to operate faster, we need a higher supply voltage for a given load
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capacitance. The CMOS speed law embodies the main shape of the delay versus supply voltage plot:

Gate delay « A (4.2)
(V-Vr)2

This plot is sketched on the right in Figure 4.28.

4.6.7 SPICE Simulation of an Invertor

The CMOS speed law can be demonstrated using a low-level simulation. The predominant simulator
for analogue electronics is SPICE (Simulation Program with Integrated Circuit Emphasis). SPICE can
be used in a stand-alone form for small circuits or can be invoked through mixed-signal simulations
(Section 8.3.7) in which digital electronics interact with analogue electronics. Figure 4.29is a
complete demonstration of the use of hspice. A standard CMOS invertor, composed of two
MOSFETSs, is simulated at two supply voltages.

Figure 4.30 shows two output responses for different supply voltages. The curves for the output load
capacitor are fairly typically exponential when charging or discharging. The shape is not a true
1-exp(-t/CR) curve due to non-linearity in the MOSFETs. However, it is pretty close. If the FETs had
the same on-resistances at the two supply voltages, although the swing of the output in the two plots
would be different, the delays before they cross the half-supply level would be identical. The
difference arises because the on-resistance is lower when the gate voltage is lower (i.e. when it is
closer to the transistor threshold voltage).

4.6.8 Dynamic Voltage and Frequency Scaling
We will look at four techniques for saving power in the 2-D space defined in Table 4.2.

Table 4.2 Design space for dynamic power-saving techniques

Clock Power
On/Off Clock gating Power supply gating
Variable Dynamic frequency scaling (DFS) Dynamic voltage scaling (DVS)

As Figure 4.28 shows, the CMOS delay is broadly inversely proportional to the supply voltage; hence,
as the clock frequency is increased, then, over a limited range, the supply voltage can be adjusted
roughly proportionally to the clock frequency so that the timing closure can still be met

(Section 8.12.16). At a single supply voltage, the speed of a gate can be altered at design time by
choosing its transistor geometries. Standard cell buffers are typically available with several cell drive
strengths (Section 8.4.1).

The fCV2 formula means that power consumption is quadratic in supply voltage (Section 4.6.2).
Building on these observations, dynamic voltage and frequency scaling (DVFS) enables a circuit to
operate efficiently at different speeds with different powers. Under DVFS, as the performance needs
change, the clock frequency for a system or subsystem is moved between pre-programmed
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// spice-cmos-inverter-djg-demo.hsp

// Updated 2017 by David J. Greaves

// Based on demo by David Harris harrisd@leland.stanford.edu

// Declare global supply nets and connect them to a constant-voltage supply
.global Vdd Gnd

Vsupply Vdd Gnd DC “VddVoltage'

LI11707777777771777777777777777717717117717

// Set up the transistor geometry by defining lambda

.opt scale=0.35u * Define lambda // This is half the minimum channel length.
// Set up some typical MOSFET parameters.
//http://www.seas.upenn.edu/~jan/spice/spice.models.html#mosis1.2um

.MODEL CMOSN NMOS LEVEL=3 PHI=0.600000 TO0X=2.1200E-08 XJ=0.200000U
+TPG=1 VT0=0.7860 DELTA=6.9670E-01 LD=1.6470E-07 KP=9.6379E-05
+U0=591.7 THETA=8.1220E-02 RSH=8.5450E+01 GAMMA=0.5863
+NSUB=2.7470E+16 NFS=1.98E+12 VMAX=1.7330E+05 ETA=4.3680E-02
+KAPPA=1.3960E-01 CGD0=4.0241E-10 CGS0=4.0241E-10
+CGB0=3.6144E-10 CJ=3.8541E-04 MJ=1.1854 CJSW=1.3940E-10
+MJSW=0.125195 PB=0.800000

.MODEL CMOSP PMOS LEVEL=3 PHI=0.600000 T0X=2.1200E-08 XJ=0.200000U
+TPG=-1 VT0=-0.9056 DELTA=1.5200E+00 LD=2.2000E-08 KP=2.9352E-05
+U0=180.2 THETA=1.2480E-01 RSH=1.0470E+02 GAMMA=0.4863
+NSUB=1.8900E+16 NFS=3.46E+12 VMAX=3.7320E+05 ETA=1.6410E-01
+KAPPA=9.6940E+00 CGD0=5.3752E-11 CGS0=5.3752E-11
+CGB0=3.3650E-10 CJ=4.8447E-04 MJ=0.5027 CJSW=1.6457E-10
+MJSW=0.217168 PB=0.850000

[1717777777777777777777777777771771777177777777

// Define the invertor, made of two MOSFETs as usual, using a subcircuit.

.subckt myinv In Out N=8 P=16 // Assumes 5 lambda of diffusion on the source/drain

ml Out In Gnd Gnd CMOSN 1=2 w=N

+ as="5bxN' ad="5xN'

+ ps="N+10' pd="N+10'

m2 Out In Vdd Vdd CMOSP 1=2 w=P

+ as="5xP' ad="5xP'

+ ps="P+10' pd="P+10'

.ends myinv

L111701777777771777777717777717717777717717777

// Top-level simulation net list

// One instance of my invertor and a load capacitor

x1 In Out myinv // Invertor

C1 Out Gnd 0.1pF // Load capacitor
LI11100707771771777777777777717717717117717777

// Stimulus: Create a waveform generator to drive In

// Use a "Piecewise linear source" PWL that takes a list of time/voltage pairs.
Vstim In Gnd PWL(O O 1ns O 1.05ns “VddVoltage' 3ns VddVoltage 3.2ns 0)
I11171777777777777777777777771771771771771777177

// Invoke transient simulation (that itself will first find a steady state)
.tran .0lns 6ns // Set the time step and total duration

.plot TRAN v(In) v(Out)

.end

Figure 4.29 SPICE description and setup for two transistors arranged as a CMOS invertor simulated with a two-step input
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Figure 4.30 Plots of the invertor when running from V¢ supplies of 2.5V (left) and 1.5 V (right). Red is the input stimulus and blue is the simulated output

frequencies. Simultaneously, the supply voltage is adjusted to be the lowest that reliably works at the
chosen clock frequency. Overall, this gives a cubic power cost. The dynamic power is proportional to
clock frequency and supply voltage squared, so when the supply voltage is also increased roughly
linearly with clock frequency, there is a cubic factor in the power cost. However, the energy use for a
given computation will grow only quadratically, since the task will be completed more quickly, so the
cubic power is expended for less time. DVFS obtains peak performance under heavy loads, yet avoids
the cubic penalty whenidle.

DVFS is commonly used in laptop computers and cell phones, because the computational load varies
greatly according to what the user is doing. A process called the CPU governor chooses an
appropriate clock frequency, typically based on measuring the operating system halt time. Each
processor will halt when there are no runnable jobs in the operating system job queue. Halting is
commanded by an explicit halt instruction and processing resumes on the next hardware interrupt.
The operating system has an idle task that has the lowest static priority, so that it runs when there is
no user work to run. The task body contains a halt instruction. The system load average is computed
by the operating system based on timestamping when a core halts and again when it resumes after the
halt instruction. This load average, or a variant of it, is the main input to the governor daemon.

DVFS Worked Example

As an example, consider a subsystem with an area of 64 mm? and average net length of 0.1 mm
containing 400 000 gates/mm?2. Assume an average toggle rate of a = 0.25. The CV2 energy of a
complete cycle is expended at half the toggle rate. The effective net capacitance is

0.1 mm x 1fF/mm x 400K x 64 mm? = 2.5 nF. Table 4.3 gives the typical power consumption for a
subsystem when clocked at different frequencies and voltages. It is important to ensure that the
supply voltage is sufficient for the clock frequency in use: too low a voltage means that signals do not
arrive at D-type inputs in time to meet the setup time. A factor of four increase in clock frequency has
resulted in a nearly tenfold increase in power.
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Table 4.3 Example of static and dynamic power use for a three-level DVFS configuration. (The static current was estimated using ﬁVO-9, where 3 was chosen
to give an approximate 1:3 ratio of static to dynamic power at the middle supply voltage)

Supply voltage Clock frequency Static power Dynamic power Total power

(V) (MHz) (mW) (mW) (mW)
0.8 100 40 24 64
1.35 100 67 68 135
1.35 200 67 136 204

1.8 100 90 121 211

1.8 200 90 243 333

1.8 400 90 486 576

DVFS Shortcomings

DVFS was very popular throughout the first decade of the 21st century, when CMOS geometries of
45 to 90 nm were widely used. These had a very low leakage. For a predictable hard real-time task,
DVFS could be arranged to finish just in time. For instance, a video decoder would clock at just the
right speed for each frame to be ready to display on time. Computing faster and halting is worse due
to the quadratic cost of running fixed-sized jobs faster. In today’s technologies, DVFS is less attractive
for two reasons. First, the higher static power means it can be better to compute as fast as possible
and then switch off using power gating (Section 4.6.10). Second, the range of voltages where the logic
will operate correctly is much lower, so getting a significant energy saving from DVFS is not possible.

4.6.9 Dynamic Clock Gating

DVFS involves adjusting the clock frequency and supply voltage to a subsystem. Both of these are
typically controlled by feedback loops that contain low-pass filters. Hence, there is inertia in the
adjustment and changes must be performed with a granularity of at least 1 to 10 ms. Turning off the
clock and turning off the power to a subsystem are two further power-saving techniques. These are
purely digital and can be done orders of magnitude more quickly. We will discuss power gating in
Section 4.6.10. Here we discuss automatic clock gating.

Clock distribution trees (Section 4.9.5) consume a considerable amount of power in a SoC. The clock
might use 10 per cent of the energy in an active subsystem. A region of logic is idle if all the flip-flops
are being loaded with their current contents, either as a result of synchronous clock enables or just
through the nature of the design. This is very common, but such a region still consumes 10 per cent of
its power because the clock is turned on. Anidle period is some number of adjacent idle clock cycles,
which can last a single clock cycle or thousands. Considerable savings can be made by turning off the
clocks during idle periods.

Figure 4.31 shows three circuits that effectively disable the clock to a subsystem. Figure 4.31(a)
shows a synchronous clock-enable structure using an external multiplexer. This multiplexer is part of
the flip-flop in reality and is implemented with lower overhead than shown. However, such a circuit
does not stop the clock input to the flip-flop or save the dynamic power consumed by the clock net.
Instead of using synchronous clock enables, current design practice is to use a clock gating insertion
tool that asynchronously gates the clock. One clock-control logic gate can serve a number of

194



Chapter 4 | System Design Considerations

neighbouring flip-flops, such as a state machine, broadside register or some number of these. Hence,
the clock net in that region will consume no dynamic power when gated off.
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a) Synchronous Clock Enable b) Clock gate using AND c) Clock gate using OR

Figure 4.31 Clock enable using (a) a multiplexor, (b) an AND gate and (c) an OR gate

Figure 4.31(b) shows gating with an AND gate whereas Figure 4.31(c) has an OR gate. A problem with
the AND gate is that if the clock enable (CEN) changes when the clock is high, there is a glitch on the
clock net. A similar problem with the OR gate solution arises if CEN changes when the clock is low.
Hence, care must be taken not to generate glitches on the clock as it is gated. Transparent latches in
the clock-enable signal prevents these glitches, as shown in Figure 4.32. The transparent latch delays
any changes during the clock enable so that they are applied only during a safe phase of the clock.
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Figure 4.32 lllustrating a transparent latch and its use to suppress clock gating glitches

Compared with synchronous clock enables, in combinational clock gating, care must be taken to
match the clock skew when crossing in and out of a non-gated domain. Delay buffers may have to be
inserted to avoid a shoot-through by building out the non-gated signal paths as well. A shoot-through
occurs when a D-type is supposed to register its current D-input value, but this has already changed
to its new value before the clock signal arrives.

The question now arises of how to generate a clock-enable condition. One could use software to
control complete blocks using additional control register flags, as is the norm for power gating
(Section 4.6.10). However, today’s designs use fast automatic detection on a finer-grained basis.
Synthesis tools automatically insert additional logic for clock-required conditions. A clock edge is
required if any register can change its state on that clock edge.

Figure 4.33 shows a basic technique for deriving a clock-required expression. It uses a so-called mitre
pattern, in which the difference between D-inputs and Q-outputs for a set of flip-flops is computed. If
there is a difference, a clock is needed for that group of flip-flops. The amount of such mitre logic
needs to be constrained, otherwise there will be no net energy saving. The increase in area generally
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Figure 4.33 Using XOR gates to determine whether a clock edge would have any effect

increases the net length, costing further energy. It is critical to choose carefully which flip-flops are
included in a gated group. The tools use heuristic search algorithms.

A mitre is the characteristic shape of a bishop’s hat and a joint in woodworking (e.g. at the corners of
picture frames). It is where two planes form a prismatic edge.

Pipeline Stage Pipeline Stage Pipeline Stage

'\D Q - '\D Q >
Pipeline

A

Pipeline V D @ Pipeline

Logic Logic

Logic

Clock Not D Q
Required % b a

Figure 4.34 Clock-needed computations forwarded down a pipeline

An analysis of a design structure can enable clock-gated domains to share information constructively.
For instance, as sketched in Figure 4.34, activity in one region may depend on activity in another
region the clock cycle before. Another technique is to use a counter to implement a retriggerable
monostable state. This is helpful if the last useful clock cycle is bounded to occur within a statically
determined time horizon of an event detected by a mitre construction. In each clock cycle, all
registers will be being reloaded with their current data after the settling time.

4.6.10 Dynamic Supply Gating

A SoC design that serves multiple different products can have large functional blocks in silicon that
are never used during the lifetime of a product. Within a single product, not all the subsystems are
typically in use at once. For instance, for the SoC for a tablet computer, whether the Bluetooth
interface is being used is independent of whether the MPEG compression accelerator is active.
Cryptographic coder blocks for various ciphers may be present, but only one is likely to be in use at
once. Hence, the ability to independently turn the various subsystems within a chip off and on is very
useful for saving energy. Each subsystem may support a set of sleep modes, which always includes
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fully off and fully active, but which may also include standby or data retention modes. The fully off
mode is supported using dynamic supply gating, also known as power gating. Dark silicon constraints
imply that, for all future chips, most of the area must be mostly powered off (Section 8.2).

Figure 4.35 shows the general principle of power gating. In essence, a large transistor serves as an
on/off switch for a subsystem. This will be designed as a low-leakage transistor at the expense of
switching speed. Its channel width will be ratioed to be the same as the sum of those components
connected to the rail it feeds, or slightly more. The extra transistor can be either an N-channel device
at the ground side, in which case it is called a footer, or a P-channel device at the power supply side, in
which case it is called a header. The detailed circuit shown on the right indicates how a footer power
gate is configured. Footers are most commonly used because N-type transistors have better
on-resistance for a given area.
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Figure 4.35 Power gating in general (left) and an actual power gate circuit (right)

Power gating implicitly introduces a transistor stacking effect such that, in sleep mode, the drain of
the header or footer settles to an intermediate voltage, effectively making the gate-source voltage
negative for the transistors in the block. This further reduces the leakage. As a downside, the gating
transistors increase the on-resistance, which negatively impacts performance when the logic is active.

Output nets from a gated-off region cannot be allowed to float, since they can give rise to large
short-circuit currents (Section 4.6.2). Hence, special domain isolation cells are inserted into the signal
paths. These cells are designed to tolerate floating inputs and produce a definite logic zero when their
source is turned off. Dynamic power gating typically requires some sequencing. The power controller
will use several clock cycles to perform an ordered power-up (power-down) of a region and enable
(disable) isolation gates. Additionally, a gradual turn-on over tens of milliseconds avoids creating noise
on the global power rails. Isolation cells on the input to an off region are normally not required, but
these outputs could be set to an appropriate logic level if parasitic paths through protection diodes
are a problem in a particular technology.
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Originally, powering off or on was controlled by software or top-level input pads to the SoC. Any state
held in registers in a powered-off region is normally lost. This is fine for programmer-controller power
phasing, since the programmer will know that the subsystem needs reinitialisation. Today, dedicated
microsequencer hardware can control a hundred power islands within a single subsystem. Automatic
power gating often uses the AMBA P or Q protocols described in Section 3.7.5.

Common practice is to power off a whole chip except for one or two RAMs and register files. This is
partial power gating. It was particularly common before flash memory was invented, since a small
battery was used to retain the contents using a lower supply voltage (known sometimes as the CMOS
RAM data-holding voltage). Today, most laptops, tablets and PCs still have a second, tiny battery that
maintains a small amount of running logic when the main power is off or the battery removed. This
runs the real-time clock (RTC) and might be needed for secret retention of the secure enclave
(Section 4.9.1). If logic is run only at a low speed it can be run on a lower voltage. Likewise, for data
retention, a lower voltage is needed on SRAM storage cells than is normally used for normal reading
and writing operations. These reduced voltages can be provided by using a power-switching
transistor, half on, half off, as a linear voltage regulator. Linear regulators dissipate energy as heat and
so are far less efficient than adjusting the standard switched-mode power supply to a lower voltage,
but the overall power is still reduced . Another technique that dynamically alters a subsystem from
active to standby levels of performance is dynamic body bias.

Dynamic Body Bias

A conventional MOSFET is principally controlled by the potential difference between its gate and its
substrate. The active transistor layer sits on top of the silicon wafer. The wafer is doped as P-type and
is normally connected to the ground potential. N-type transistors can use the substrate P-doping or
sit inside wells with stronger doping. P-type transistors sit inside N-wells that are normally connected
to a VDD supply potential. In body biasing, a voltage offset applied to the transistor substrate can
change the effective threshold voltage of the transistor. This is achieved by removing the normal
‘tub-ties’ that connect the well to the supply rail, instead connecting a low-current voltage generator.
The system can then adjust the leakage current of all transistors in the well, either statically or
dynamically. When a subsystem is not active (all nets are stable), the body bias can be adjusted to
enter low leakage mode. If a signal must be conveyed quickly or a result delivered, the bias can be
adjusted quickly in advance. The potential across the well/substrate boundary can be quickly
discharged with large transistors. When activity ceases, it is not important how quickly the body bias
builds up again, which is done using low-current switched-capacitor invertors. Unfortunately, body
bias does not work effectively in FinFET technologies (Section 8.2.1) since, due to their geometry, the
substrate potential has less effect compared with the drain and source potentials.

Thermal Throttles

In the past, chips were often core-bound or pad-bound. Pad-bound meant that a chip had too many
I/O signals for its core logic area, and the number of 1/O signals puts a lower bound on the perimeter
of a chip. Today’s VLSI technology allows I/O pads in the middle of a chip, so being pad-bound is
uncommon. Core-bound still arises and is preferable. If core-bound, the chip dimensions are governed
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by the area of the content. Today’s VLS| is commonly power-bound, meaning that the area must be
inflated for heat dissipation.

A power throttle measures the temperature of a SoC and reduces the clock frequency and perhaps
the power supply voltage if it is becoming too hot. As computed in Section 4.4.1, the thermal time
constant for a chip and its heat spreaders and sinks is of the order of seconds. Hence,
temperature-based throttles are much slower to respond than clock gating or load-based DVFS. In a
multi-socket environment, dynamically moving the work between chips helps even out the power
dissipation. Relocating a task every second has very little impact on cache performance, since the vast
majority of cache-line lifetimes are orders of magnitude shorter. A commercial implementation for
processing blades in a server farm is Intel’s running average power limit (RAPL), which provides a
temperature- and power-aware API for the operating system governor. An alternative approach is
computational sprinting: short bursts of processing are allowed to far exceed the heat removal
capacity. Much of the workload of a portable computer, like displaying a web page, is exceptionally
bursty in demand terms, but accurate calibration of the thermal capacities enables the workload to be
met without expensive heat-removal structures.

4.6.11 Future Trends for Energy Use

Table 4.4 Summary of the properties of four power-saving techniques

Technique Clock gating Supply gating DVFS
Control Automatic Various Software
Granularity Register or FSM Larger blocks Macroscopic
Clock tree Mostly free runs Turned off Slows down
Response time Instant 2to 3cycles Instant (or ms if PLL adjusted)

Energy can be saved by intelligent control of the power supply and clock frequency. Table 4.4
summarises the principal aspects. The term dark silicon refers to having a large proportion of a chip
switched off at any one time (Section 8.2). This is expected to be the mainstream way forward as
levels of integration grow, although certain application scenarios can warrant the use of pumped
liquids or other esoteric forms of heat-extraction technology. One approach for using dark silicon is to
put the inner loops of frequently used algorithms in hardware known as conservation cores [3].
Custom accelerators can be generated using a high-level synthesis (Section 6.9) of the standard
software kernels in application-specific hardware coprocessors, and these can be put on the chip in
case they are needed.

Other power-saving approaches are to use advanced fluid-based cooling or to move away from silicon
FETs. Laptops have used simple fluid pipe cooling for decades, but heavy-duty water cooling is
returning for server-grade computing, going full circle back to the 1960s when water-cooled
mainframes were common. Increasing use of the third dimension with die-stacking (Section 8.9.1) and
multi-chip modules is greatly reducing interconnect energy use, but concentrates the power into a
smaller space. The biggest breakthrough is likely to come from a shift away from silicon FETs to
something that operates reliably with a lower voltage swing. For instance, if logic could run from a
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0.1-V supply instead of a 1.0-V supply, it would use 1 per cent of the power (Section 4.6.5). An optical
interconnect using lithographically printed light guides could also be made to work, especially for
inter-chip interconnections.

4.7 Designing for Testability and Debug Integration

Testing and debugging are related subjects that overlap since some mechanisms can be used for both
purposes. Both benefit from additional circuitry in a SoC that plays no part in normal operation. An
overhead of 5 per cent by area is not uncommon. This consumes hardly any power when not in use.
The goal of production testing is to rapidly check that each unit manufactured operates as designed.
Production testing will be discussed in Section 8.8. First, we will consider debugging the applications
running on a SoC.

4.7.1 Application Debugging

A SoC contains numerous programmable components that run software or that are set up and
controlled by software. However, software always has bugs. Although many programming errors can
be investigated with a virtual platform or ESL model (Chapter 5), this is not always sufficient or
appropriate. Many bugs arise from obscure and unexpected interactions that are different on the
virtual platform or do not occur at all. Hence, silicon hardware resources need to be devoted to
debugging. Indeed, today’s complex SoCs typically can have a considerable amount of logic for
debugging. Given adequate power gating (Section 4.6.10), there is little energy overhead from having
the debug infrastructure present yet switched off. The area overhead is not a cost problem either,
except perhaps for large trace buffers (Section 4.7.2).

Any debug infrastructure needs to be unobtrusive. A so-called heisenbug is a bug that disappears
when debug monitoring is turned on. This is most unhelpful. Making the debug infrastructure as
independent of the mainstream functionality as possible minimises the occurrence of heisenbugs.
Hence, having dedicated resources for the debug infrastructure is a good approach.

The three main aspects of a debug infrastructure are tracing, triggering and single stepping. All are
accessed via a debug access port (DAP). Tracing refers to storing information in a trace buffer.
Triggering determines when to start and stop tracing. Single stepping enables a subsystem or whole
SoC to be halted and manually advanced one clock cycle or instruction at a time. Traces are often
stored in compressed form. One form of compression relies on the program code being correctly
loaded and reliably fetched during execution. Given an off-line copy of the machine code, the
processor execution can be replayed forward or backward inside a debugger just from knowing what
values were deleted from the registers when their contents were overwritten. However, if the
problem being debugged is in the instruction stream, such an inference will be wrong and the
uncompressed visualisation will be misleading.

A considerable amount of static meta-information is also available via the DAP. This includes the chip
version number and can include a debug reflection API, which allows the inventory and arrangement
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of the debug infrastructure to be accessed by software. Hence, a generic debugger can configure itself
to show structure diagrams and human-readable register and bit-field names. The textual names and
many further details can typically be fetched into the debugger over the Internet based on looking up
the IP block kinds and version numbers stored in the on-chip ROM.

The single-processor debug primitives available are generally the same whether debugging the real
hardware or an emulated model. For instance, the GNU gdb program is normally used to debug a
program running as a separate user-space program on the same machine that the debugger is running
on, but by using the target remote command, it can attach to the real hardware or another machine
using a TCP socket. The standard techniques accessible through a debugger include:

1. Pause and step: A core can be stopped, stepped one instruction or allowed to resume normal
execution. A single step is often facilitated by a core run mode that executes one instruction and
then interrupts or pauses. This enables the debugger to run on the core being debugged.

2. Processor register access: Any of the programmer’s model registers within a core can be read or
changed by the debugger.

3. Remote reads and writes: A debugger can cause a load or store operation, either directly on a main
system bus or as though it were issued by a nominated core. That core may be running or halted.
There is minimal interruption to the running core, but there is some small overhead from the
additional debug traffic. This operation may cause a pipeline stall, so it is not completely
unobtrusive. More serious can be side effects from particularly fragile bugs. A remote operation
can cause the re-arbitration of interconnect components, page faults and cache misses. It can upset
the read and write queues in a DRAM controller. Not only does re-arbitration switch between
initiators, which has its own overhead, but the arbitration decision after the debug cycle may not
return to the original initiator. A sequential consistency bug can change or disappear in such
situations.

4. Watchpoints and breakpoints: A debugger can use hardware registers to store addresses of
interest. There might be four or eight such registers available centrally or per core. When a load or
store address matches an address in a watchpoint register, an event is generated. Likewise, when
the program counter matches a value in a breakpoint register, an event is generated.

5. Tracing and cross-trigger state machine: See Section 4.7.2.

A SoC typically has a single logical DAP. Figure 4.36 shows a basic overall setup suitable for a
microcontroller or single-core SoC. The TCP connection from the debugger connects to a USB ‘dongle’
that makes the net-level connection to the SoC. JTAG is illustrated (Section 4.7.3). This has a one-bit
data path and so can be slow. Faster alternatives use parallel data. The DAP connects to the one core
and is also shown as being able to initiate its own transactions on the primary interconnect. In this
simple single-core system, the breakpoint and watchpoint registers are in the CPU core or perhaps
inside a performance management unit (PMU) coprocessor attached to the core (Section 2.7.9). The
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DAP can pause and single step the core as well as inspect and modify its registers. When a
watchpoint, breakpoint or other event occurs, the programmable options include to count itina PMU
register, to interrupt the core or to pause the core so that the debugger can take over.

e
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Debug CPU event nets -
=== [ Workstation Core PMU EMU |-
Keyboard — 7 B
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y
GDB JTAG & : $ (
debugger daemon J
' D$ | Bus
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Figure 4.36 Debugging hardware for a single-core SoC. A debug access port is connected via JTAG and USB to a debug workstation

Many non-core IP blocks also generate events, and it can be useful to count them. Wires (net-level
flags) connect the IP block to the counter for each such event (shown in pink). These could be routed
to the PMU of one of the cores, but an alternative implementation uses a dedicated event-monitoring
unit (EMU). This can count events such as shared L2 misses, bus transactions and DRAM activations.

4.7.2 Multi-core Debug Integration

As noted, if a SoC has one processor, the debug interface connects directly to that core. Although the
per-core debug primitive set has not greatly changed in the multiprocessor SoC (MPSoC) era, we
inevitably have multiple instances of that set. Additionally, other IP blocks typically now have debug
interfaces as well.

Figure 4.37 shows two additional main components of an advanced SoC debugging solution. These
are event trace logging and cross-triggering. It is implied that all the facilities shown in Figure 4.36 still
exist, such as the ability of the DAP to initiate transactions in every address space. To support trace
logging, the cores are given an additional port that delivers a stream of trace events to dedicated
event busses (green). The port supports various levels of detail, from off, to just interrupts and
branches, and to traces that contain sufficient data for a complete programmer-view replay. The
streams from the different cores are combined or thinned out with trace event funnels and
programmable event filters. The funnels provide multiplexing as well as some smarter functionality,
such as sharing a single timestamp for data from different inputs that have the same timestamp or
generating an explicit overload token rather than tacitly dropping data if there is a temporary
overload. A compressor performs run-length encoding of consecutive identical events or for lossless
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algorithms, like Lempel-Ziv, that exploit repeated patterns. Overall, the event bandwidth must not
overwhelm the event destination, which is either an on-chip SRAM event buffer or a dedicated
high-performance bus bond-out. A bond-out, in this sense, is a set of pads that may be disconnected in
mass production packages (Section 8.9) but made available for external connection in a higher-cost
test and development package. Off-chip trace buffers are commonly used by industrial or automotive
controllers. For these, a wide parallel DAP dedicates most of its pins to data. Alternatively, a
multi-gigabit serialiser can be used to export the data rapidly (Section 3.8).

SoC chip
core SH——— Bus >——F—3 DRAM
fabric controller High-pertomance
| Program|_| . > event logging port
trace SW|tCh \4 (etC) :I:I:I:D >
A B Event trace Disconnected in normal
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monitor cell Funnel w8 to test laboratory
Trace event o 2 equipment when needed.
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Figure 4.37 Typical additional event-stream debug resources for a modern MPSoC. Operational data busses are black. Event-stream busses are green.
Debug-access busses are blue. The pink arrows denote event-monitoring nets from miscellaneous IP blocks that either do not have their own counters or
need to be made available for cross-triggering

It is easy to collect too much event trace data from CPU cores. Each core might average 10 bits per
instruction executed. Data can, instead, be collected from system busses. The figure shows a bus trace
monitor connected to the DRAM controller input. This should generate two orders of magnitude less
data than a CPU core at normal cache hit rates. Moreover, data from reads may not need to be logged
if the memory is working properly, since the data will be the same as what was earlier written, though
the data may have been written outside the temporal window being captured. An event filter may be
programmed to record events corresponding only to narrow address windows, thereby extending the
effective temporal window.

For the on-chip trace buffer, because only a finite pool of trace memory is available, a circular
arrangement based on address wrapping is used so that the oldest data are constantly being
overwritten. Hence, data up to a point of interest can be captured by stopping the trace just after that
point. The recent history is then preserved in the buffer. It is also possible for traces to be stored in the
main DRAM of the SoC or for periodic dumping of the SRAM trace buffer to the main memory under
operating system control, but these intrusive mechanisms may mask the feature being investigated.
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Debug infrastructure should normally be created with the assistance of an automated tool within the
SoC design system, perhaps as part of the interconnect synthesis. This will not only ensure the correct
wiring of the debug components, but can also be used to create meta-information files that
cross-reference physical addresses with textual names. This meta-information can be imported into
the debugger. Some of the meta-information may be aggregated in the single ROM shown on the
bottom right of Figure 4.37. The ROM also gives the part number and ECO variant (Section 8.10).
Typical sizes are 4 to 200 bytes of information. Alternatively, each IP block commonly has an identifier
hard-coded into the first register of its internal debug space. A major work item that can be handled
via such a holistic approach is proper crossing between the power and clock domains. If acomponent
is in a standby mode or powered off, it will not respond to a transaction on its debug port. The
debugger must either avoid issuing such a request or else go through the necessary power
phase/mode changes needed for the request to be handled.

A simple system uses one state bit for the run/pause state of each core and one state bit for whether
tracing is on or off. These state bits are driven by a configuration matrix whose inputs are the watch
and break events and other events from the PMU and other subsystems. Such a simple system is
inadequate for detecting complex patterns defined by sequences of events or for dynamically
adjusting the event filter predicates.

As needed originally for the PMU, significant events generated by each IP block are available as
net-level flags. At the cost of a small amount of wiring, these can be pooled as inputs to a central
programmable matrix to form a generic cross-trigger state machine. Additional state flip-flops are
provided that can be set and reset by outputs of the matrix. Their outputs are just fed back as further
inputs to the matrix. Hence, a state machine can be programmed to match a user-specified sequence
of events. Additionally, a user program can be instrumented to generate specific events by accessing
an otherwise-unused watchpoint address. As well as programmable state flags, additional resources
such as counters can be provided, again with both their input and output connections being
programmable in the matrix, or just read out over the debug bus.

4.7.3 Debug Navigation and JTAG

There are typically several different ways of connecting to the DAP of a SoC. They vary in their cost,
intrusiveness and security. A DAP may be selectively accessible to one of the cores on the SoC. This is
often the primary core, which is the first to boot, or it could be a dedicated tiny processor that just
manages booting, debug and initial DVFS and DRAM configuration. Designs need to be secure against
two attacks: IP theft and data access. The debug channel provides an obvious backdoor that needs
hiding from reverse engineering and malicious applications. Security can be enforced physically by
wiring dedicated pins on the SoC directly to an unpopulated socket on the circuit board. Alternatively,
security can be provided cryptographically and wrapped up into secure boot mechanisms. Most SoCs
support a number of boot methods, e.g. by strapping a combination of pins to supply or ground. These
same techniques can be extended to providing access control levels for the debug channels

(Section 9.1.1).
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Figure 4.38 JTAG interface chaining at board level to create a top-level node in the debug device tree

One of the oldest and most common DAPs is the Joint Test Action Group (JTAG) port, standardised as
IEEE 1149. This uses four wires per chip (Table 4.5).

Table 4.5 JTAG signal list

TDI In Test data in: serial bits from test agent or previous device
T™MS In Test mode select: frame data and addresses

TCK In Test clock: clocks each bit in and out

TDO Out Test data out: to next device or back to agent

There can be numerous chips at the circuit board level, each with a DAP. Figure 4.38 shows how two
can be linked into a daisy chain using JTAG wiring. JTAG is a serial bus that provides access to test
registers in a SoC. There can be any number of bits in a register and there can be any number of chips
in the daisy chain. One of the test registers is defined as a bypass register that then provides access to
the next chip in the chain. A protocol is defined using the values on the TMS pin to address any of the
test registers in any chip in the daisy chain. The old content of that test register is then shifted out and
new content is shifted in. New content will be ignored for a read-only register. Certain test registers
are predefined to hold the manufacturer and device numbers so that debugger software can
dynamically adapt to the physical ordering and presence of different SoCs at the board level. Inan
advanced debug architecture, one of the JTAG test registers will be used to generate an address on
the internal debug access bus (bottom blue line in Figure 4.37) and another for data reads and writes
to that address. However, JTAG is typically limited to just a few Mbps and hence, high-performance
parallel or USB-based DAPs are now additionally provided.

4.7.4 Additional DAP Facilities

The original purpose of JTAG was for making boundary scans for board-level product testing, as
explained in Section 4.7.5. A SoC typically has a hundred or more bond pads. In a boundary scan, a
virtual connection is made to each pad that carries an I/0 signal using a shift register structure that is
accessed via just a few bond pads. SoCs do not always support boundary scanning, but this debug port
is increasingly used for other chip-level product tests and manufacture purposes. Some of these are:
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® Redundancy strapping: Parts of a defective die are hidden to make a lower-specification product
or to substitute with a standby instance (Section 8.8.4).

= Voltage and speed grading a part: Ring oscillators or other silicon process instrumentation is
accessed for calibration and installation of DVFS tables (Section 4.6.8).

= |nstalling the MAC address, PKl secret key or other data that need to be different in each SoC
manufactured.

= General BIOS and file system flashing: Boot ROM, embedded applications and other low-level
code stored in flash memory are installed.

= Accessing built-in self-test (BIST) mechanisms (Section 4.7.6).

4.7.5 Boundary and General Path Scans

SoCs contain IP blocks from different IP vendors. Each came with a production test programme.
Production testing of wafers and chips is discussed in Section 8.8. Test vectors are applied to the bond
pads of the whole chip. However, for integrated IP blocks, it can be useful to apply a per-block test
programme in the same way to each block inside a chip. Moreover, it is sometimes helpful to be able to
run a chip-level production test when the SoC is attached to a circuit board. Scan path testing
provides these mechanisms. It was the original motivation for the JTAG definition.
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Figure 4.39 Basic structure of the additional logic required in input and output pads for boundary scanning. Serial data are shifted from one pad to the next
using the test clock. The result from the previous test vector is shifted out as a vector is shifted in. The two strobe signals are used to apply the test vector to
the input pads and to sample the data at the output pads
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Figure 4.39 shows a fragment of a boundary scan path. The path is inserted into the electronics of
each input and output pad. When the scan mode select net is low, the scan logic has no effect, but in
scan mode, the boundary scan logic takes over from the input pads. The scan logic uses a shift and
store approach. Two flip-flops are added to each pad. One flop in each pad is a stage in the chain for a
shift register. A complete word of length equal to the number of instrumented pads is shifted in from
the DAP controller. Such aword is called a test vector (Section 8.8.2). Then, on the strobe signal, data
are captured from the output pads and new data applied to the input pads. The captured data are
shifted out as the next vector is shifted in. The second flop in each pad, the data register, keeps the
applied test vector stable during the shifting.

Clearly, boundary scan can be applied to appropriate IP blocks in a SoC. This might be suitable for
hard macrocells (Section 8.4.2), such as a custom processor core. However, with increased
standardisation of on-chip busses, such as the AXI standard, boundary scanning of IP blocks is less
commonly used. A variant can be used for BIST access. A general scan path is similar to a boundary
scan path, but the scan path is threaded through all of the flip-flops within the IP block. This allows the
cycle-by-cycle observation of a component, but the component cannot be used at full speed during
this mode and there is a significant overhead in the additional wiring. General scan path logic is
typically inserted by running a logic synthesiser (Section 8.3.8) in a special mode. This additional logic
is called a logic built-in self-test (LBIST).

4.7.6 BIST for SRAM Memories (MBIST)

Figure 4.40 shows an SRAM component with a BIST/ECC wrapper around it. Built-in self test (BIST)
circuits are used in hardware subsystems that cannot easily be tested in other ways. BIST for memory
is called MBIST. For instance, full access to the data memory of a trusted compute module or a secure
enclave (Section 4.9.1) might be completely denied from outside the silicon for security. If each RAM
has its own BIST, the RAMs can be tested in parallel during the production test. Serial testing could be
the only option if the RAM is tested using code on one of the cores or if external test vectors under a
wafer probe are used. Under normal operation, the self-test wrapper acts as a bus protocol target for
externally commanded reads and writes. However, in self-test mode, which will be selected over the
DAP, the wrapper will run memory tests that write and then read back standard patterns such as
O/F/5/A and ‘walking ones’. The results will be readable over the debug bus.
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Figure 4.40 A static RAM with self-test wrapper around it. An error correction wrapper has a similar structure, but then the SRAM data bus will be wider
than the external data bus. Both wrappers are often logically present, in which case a single wrapper may implement both functionalities
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Error-correcting code (ECC) memory has a similar structure. Rather than building and operating a
RAM out of completely reliable technology, other design points are used. A RAM that is clocked a
little too fast or run on a slightly low voltage or exposed to atomic radiation will suffer the occasional
error. Provided the actual error rate is within the design margin, data can be corrected upon readout
or a periodic ‘scrub’. Like a refresh for DRAM, scrubbing is the process of periodically reading out each
word and writing back a corrected version if necessary. The ECC wrapper extends the word width for
writes by appending additional parity check or correction digits. On reading back, if the bits do not
match, the data are corrected where possible or else an error response is returned to the transaction.
Statistics on the rate of corrections are readable over the debug interface. The debug interface may
also be used to program the scrub rate. Since a data access port supports handshaking, contention for
a RAM location is simply solved using arbitration. The same ECC techniques are also commonly used
for DRAM, but DRAM is off-chip and has a separate production test.

4.8 Reliability and Security

SoCs are sold into diverse markets that differ in their reliability and security requirements. A SoC may
need to be ultra-reliable for healthcare and avionics applications. It may need to be robust under high
or low temperatures or able to withstand high radiation levels in outer space. Often, a SoC needs to
be secure against reverse engineering, either in protecting its own intellectual property or when
serving as a gateway device for financial transactions or valuable copyright-protected materials, such
as digital video projection.

4.8.1 Physical Faults, Performance Degradation, Error Detection and Correction, and Pre-
and Post-silicon Mitigation Techniques

Faults are classed as hard or soft. A hard fault occurs consistently and arises from a manufacturing
fault or afailure. On the other hand, a soft fault happens at random during an execution and is not
re-encountered on a re-execution. A single-event upset (SEU) is a soft fault that arises from external
interference, such as a cosmic ray hitting the silicon chip, power supply noise or intense
radio-frequency interference (RFI) originating from a nearby transmitter or faulty heavy-duty switch
gear. Some hard faults are manufacturing faults arising from dislocations in the silicon crystal lattice
or dirtin the processing steps. Chips with this sort of fault should be discarded during the production
test.

Hard faults also arise from damage during use. Damage can be caused by an electrostatic discharge
(ESD) in which a charged object, typically a human, touches signal wiring. All chip I/O bond pads have
protection diodes that handle everyday electrostatic discharges, but certain clothes or floor materials
can lead to excessive charge that can flow into the core circuitry and burn out the miniature
structures. Lightning storms can cause the same problem, either from a direct strike or by inducing
voltages in the cabling between components. Discharges can also enter via the mains electricity grid
and power supply.
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Hard faults can occur due to wear. A flash memory may no longer erase owing to the build-up of
residual charge (Section 2.6.8). The flow of electricity through a silicon chip structure causes gradual
electromigration. As explained in Section 8.4.5, metallic materials can be moved by an electric
current from where they were placed during manufacture. Eventually, a component may no longer
function correctly, leading to a hard fault.

4.9 Hardware-based Security

Building on the history of time-sharing mainframes, the basic principles of information security on a
SoC remain access control lists and virtualisation. These traditionally relied on VM and partitioning of
the ISA into user and supervisor mode instructions. However, the need for multiple roots of trust for
authenticated financial and cell phone transactions together with copyright in multimedia streams
raises new requirements for digital rights management and copy protection. Players of online games
need assurance that other players are not using a version in which gunshots always hit. Traditional
virtualisation applies only to user-mode instructions, so further hardware support has been added to
most ISAs, where it was lacking, to fully virtualise the platform to the extent that multiple complete
operating systems can be run at once.

Low-cost hardware platforms typically run without VM. Instead, a limited form of hardware
protection is offered by a memory protection unit (MPU). An MPU is programmed or hardwired to
divide the physical memory space into a small number of protected regions, e.g. 8. Each region has
access control privileges, which include the standard read, write and execute privileges. As with the
standard page fault used by conventional VM, an exception is raised for a privilege violation. An MPU
can be programmed only in supervisor mode and all interrupts, including an MPU fault, are run in
supervisor mode. I/O devices may be guarded from user-mode code if they are configured or
hardwired to take note of the security-level indication in the bus transaction. In an AXI interconnect,
this is communicated in the 3-bit AWPROT field, which defines four levels of security for each piece of
code or data.

The classical approach to virtualising a SoC fully so that multiple so-called guest operating systems
can run at once is to run each operating system in user mode and to emulate all instructions that fault
on a privilege violation. Such a fault is handled by a small and trusted virtual machine monitor (VMM),
which is also known as as a hypervisor. This requires the ISA to ensure that any behaviour-sensitive
instruction raises such a fault [4]. A behaviour-sensitive instruction is one whose result might be
different if run in user mode instead of supervisor mode. If the result is different but no fault is raised,
then the VMM cannot intervene to emulate the expected behaviour. Nearly all major ISAs that
previously had instructions of this nature have recently been altered to facilitate virtualisation. If
such alterations are not possible, an alternative is to rewrite parts of the operating system to avoid
such sequences. This can be folded into the automated code rewriting that is often used as part of the
emulation of privileged instructions using hotspot detection and other JIT techniques.
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4.9.1 Trusted Platform and Computer Modules

A trusted platform module (TPM) is a secure subsystem that was originally implemented as a
separate chip on PC motherboards. The module is tightly delineated using a separate piece of silicon.
Tamper-proof protection might also be implemented, in which secrets held are destroyed if an
attempt to open or probe the circuit is detected. This secret repository is called a secure enclave.
Intrusion avoidance and detection are typically implemented with additional metal layers on the
wafer or around the package. A TPM can also check for repeated similar inquiries, repeated resets or
a slow clock frequency. A TPM typically contains a non-volatile store, a random number generator
and a low-throughput cryptographic processor. Together, these provide the following typical services:

= Platform identifier: This is rather like the MAC address of a network card, but cannot be faked. It is
often used for software licensing.

= RSA key-pair generator: This is used in public key encryption (PKI) (Section 9.1.1). A key pair
comprises a public key and a private key. The private key is kept entirely within the TPM, which
prevents it from being cloned or shared maliciously.

= Authentication: A one-way hash function is combined with a key also held in the TPM to produce
an unfakable digital signature for a body of data streamed to the TPM.

= Akey/value store with access control: Small amounts of data, such as high scores ina game or a
PIN, are saved under a string key and updated, deleted or retrieved only with authenticated
commands.

= Random number generation: This is a source of the random nonce values required in many secure
protocols. The values are produced by pieces of logic that have truly random behaviour, generally
based on metastable resolutions (Section 3.7.2) or the amplification of random electron
movements. (This differs from a physically unclonable function (PUF), which uses random
variations arising during manufacturing to implement a function that behaves consistently on any
particular device, but which varies randomly between devices.)

If a TPM has only a low-speed connection to the main processor, high-throughput encryption is
achieved using the TPM to generate session keys, perhaps once per second. These are installed in the
main crypto-processors or as part of the secondary storage interface for encrypted file systems.

However, having a separate chip is expensive and contrary to the SoC philosophy. The data passingin
and out of such chips is communicated on the bus nets. Such chips have exposed power connections
that can create a side channel, which is an unintentional communication path that allows secrets to
escape. Supply connections have been attacked using differential power analysis (DPA),
electron-beam scanning and physical probing. Some poor designs have been triggered into revealing
their secrets using runt clock pulses on their interfaces. In DPA, a test is run millions of times. The
supply current waveform is accurately recorded and averaged. In the same way that a safe cracker
with a stethoscope can successively find the dial settings where each hidden tumbler hits the next,
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DPA can detect at what bit positions a tentative key fails to match. Designs attempt to mitigate this by
using a PRBS (Section 3.8) to induce random wait states and a random number generator to permute
address and data bits to a RAM each time power is applied.

4.9.2 Trusted Execution Mode

Rather than having physical security around a trusted enclave, as with a physical TPM chip, an
alternative is to emulate this behaviour on a SoC core that has a dedicated security mode, which
supports a trusted execution environment (TEE). This mode has exclusive access to a region of
curtained memory and certain peripherals that cannot be accessed from other processing modes,
including any supervisor mode. This is one of the motivations for the TrustZone architectural
enhancements from Arm, which has a new processing state called hypervisor mode. Each interrupt
source can be programmed to either interrupt into hypervisor mode or behave as normal. Hence,
hypervisor mode can service page faults by emulating the page walk of a guest operating system and
serve as a basis for efficient VMM provision. For high performance, hardware assistance for page
walking of the guest VM mapping may also be provided.

4.9.3 Capability-based Protection

An alternative to virtual memory that can also serve as a basis for VMMs is provided by capability
architectures [5, 6]. All data in registers or memory locations under a capability architecture is either
plain data or a capability. A hidden tag bit on all values marks which form is held. The ISA makes it
impossible to create a capability from plain data. On system reset, one register is loaded with a
comprehensive almighty capability that can access any location for reading, writing or executing. ISA
instructions refine a capability into one that has fewer permissions or covers a smaller region of
memory. There is no restriction on executing the refine operation but there is no inverse instruction
or equivalent sequence of instructions.

Recent research has shown that a capability ISA can be implemented for a low hardware cost [7].
Efficiency can be similar to that of simple MPUs. This is being explored commercially by Arm in the
Morello project. An existing ISA was changed so that all I/O and memory accesses must use the
capability protection mechanism. This immensely improves security compared with MPU-based
solutions, for which programmers must exercise considerable discipline to make sure there are no
side channels. Most code can be recompiled without change, especially if conventional pointers are
supported within a memory region defined by capabilities stored in implied segment registers rather
than forcing all memory access to be made directly via a capability. A small amount of additional code
refines the capabilities at boot time and in dynamic memory allocations (stack and heap). This leads to
avery promising, highly secure design point, although there is a memory overhead in storing tag bits.

4.9.4 Clock Sources

Most electronic products use a sound wave inside a quartz crystal as a clock source. Ultra cheap
products, like a musical greeting card, instead use an R/C oscillator, but this typically has only 10 per
cent accuracy. One semitone is 6 per cent, so these cards are often well out of pitch. Figure 4.41
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Typical spec:
Nominal Output: 33 MHz
Initial accuracy: 25ppm
Drift:
1ppm per year
1ppm per centigrade
Jitter: almost unmeasurable.

Crystal inside HC49
metal screening can.

0—{>Q—<>_Doﬂpm b) Canned crystal and broken open view. Period
e.g. 1/33e6

a) Pierce's quartz crystal oscillator circuit
—— 12pF —— 12pF with second inverter to 'square up' the sine wave. ¢) Output waveform

T Ground

Figure 4.41 Crystal oscillator circuit (left), canned crystal and contents (centre), and specification and output waveform (right)

shows a typical circuit that exploits the piezoelectric effect of a crystal to make it resonate. An
invertor becomes an inverting amplifier using a resistor to bias it into its high-gain nearly linear region.
The oscillation frequency is set by the reciprocal of the thickness. Above 20 MHz or so, a crystal
cannot be cut thinly enough, so a 3rd of 5th overtone is forced with an external L/C tank circuit.

4.9.5 PLL and Clock Trees

Outside Inside —>0—
S“;% St?)% PLL circuit. —t—>0— |_—| |_—| |_—| |_—|

@ e o [ H I

—>0—

Lo - sl aaliag
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100 MHz _|>O_

D ra';lio Clock distribution H tree. H tree layout. @

Figure 4.42 Clock multiplication using a PLL (left) and clock distribution layout using a fractal H-tree (right)

For higher clock frequencies of around 1 GHz, which are commonly needed for CPU cores, the crystal
oscillator frequency is multiplied up on-chip using a phase-locked loop (PLL). A PLL is shown on the
left of Figure 4.42. A voltage-controlled oscillator (VCO) generates a clock whose frequency depends
on the average voltage on its control input. By dividing down the generated frequency by a constant
factor, e.g. 10 as shown, the frequency can be made the same as that of the board-level clock of a
crystal under locked operation. A simple AND gate can serve as a phase comparator. If the VCO
output is a little too fast, the output from the divider will overlap less with the high cycle of the
external clock input, resulting in a reduced average voltage on the AND gate output. The resistor and
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capacitor form a low-pass filter (LPF). This helps provide inertia and stability. The VCO reduces its
output frequency and remains phase and frequency locked to the external input. Dynamic frequency
scaling (Section 4.6.8) can be implemented by changing the division ratio with a larger division factor
leading to a higher system clock rate for a fixed external reference.

A clock tree delivers a clock to all flops in a domain with sufficiently low skew. Too much skew
(difference in arrival times) leads to a shoot-through, such that a flip-flop output has already changed
while it is still being used to determine the next state of a companion (Section 4.6.9). Skew in delivery
is minimised using a balanced clock distribution tree, so that each path from the VCO to the clock
input of a flip-flop has the same net length and the same number of buffers. Inverters are used as
buffers to minimise pulse shrinkage. In most technologies, a buffer propagates the zero-to-one
transition faster or slower than the opposite transition. If a chain is composed of non-inverting stages,
the effects will accumulate systematically, resulting in duty-cycle distortion in which the pulse width
of one phase of the clock shrinks. One layout that ensures a balanced structure is the binary H-tree,
shown on the right of Figure 4.42. An inverter can be placed at every (or every other) point where the
clock net splits two ways. The flip-flops are wired to the ends of every line making up the smallest H
pattern.

If the H is balanced, the clock distribution delay does not require further consideration. However, if
unbalanced clock timing is needed for clock skewing (Section 4.9.6) or to compensate for delays in
clock gates, a more detailed delay model is needed beyond the simple lumped-element delay model of
Section 4.6.4. The resistance of each net segment produces a delay down that segment that depends
on the loading of the segment. A full SPICE simulation is always possible, but the EImore delay model
provides a reasonable approximation to real behaviour. The total capacitive load on a segment is
simply summed and used along with the resistance of that segment to model its delay. The delay to a
point on the net is the sum of the delays thereby calculated from the source. Both forking and
non-forking nets can easily be computed with the EImore model. For a homogeneous non-forking net,
the Elmore delay degenerates to a simple sum of an arithmetic progression and gives the same answer
for any resolution of a lumped-element model. That answer is quadratic in length and gives the delay
as L2RC/2 where R and C are the resistance and capacitance per unit length. This contrasts with the
linear derating with length used in simpler models (Section 4.6.4).

4.9.6 Clock Skewing and Multi-cycle Paths

Although the golden principle of synchronous logic design has served us well for decades, today, with
the support of advanced EDA tools, the principle can be deliberately violated. The principle is that all
registers in a clock domain are clocked at exactly the same time and that all their inputs have properly
settled in advance of the setup time before the next clock edge (Section 4.4.2). Both clock skewing and
multi-clock paths can increase performance more than is allowed under the golden rule.

Clock skewing is the process of deliberately offsetting the delivery of a clock edge to a register or
group of registers within a clock domain. The default design approach is to aim for zero skew, but it is
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Figure 4.43 Clock skewing. The delivery of the clock edge to some D-types is delayed or advanced to balance out timing margins either side

valid to deliver the clock late to a group of registers if there is a long combinational path on their input
and shorter paths on all of their outputs.

Figure 4.43 shows the most basic setup. The clock to the broadside register Q is made earlier or later
by changing the structure of the clock distribution network (typically an H-tree; Section 4.9.5). The
amount of offset is D. There are multiple paths through the combinational logic, so, even in this very
simple scenario, there is a range of arrival times at the D-inputs. These add on to the clock-to-Q time
Tcq. All inputs must be stable before the setup time of Q, Tsy. Likewise, adjusting D alters the time of
arrival at registers fed by Q, but it is their hold time that is likely to be violated. A shoot-through
(Section 4.6.9) without violating the set and hold times is even possible if D is unreasonably large.

The maximum amount of clock advance allowable (most negative D) is governed by

Tcq +Amax + Tsy < T+ D. This inequality ensures that the setup time into register Q is met. The
maximum amount of clock retard allowable (most positive D) is governed by Tcq + Bmin —D > Thoig-
This inequality ensures the hold time into register R is met. Of course, in realistic scenarios, every
register could be given a controlled skew to its clock, and the combinational paths of data, as the data
move between the registers, would follow a more complex path. Nonetheless, deliberate clock skew
remains a valuable tool.

Timing slack is the difference between the arrival of data at the end of a path and the required arrival
time defined by the clock period, design constraints and timing margins. Positive slack means that the
path has met its constraints. Negative slack means that the path has failed to meet its constraints. For
any non-trivial subsystem or clock domain, there is a huge number of delay paths. These are explored
in parallel by a static timing analyser (STA) (Section 8.12.1), which creates lengthy report files.

Timing slack is often reported in two ways: the worst negative slack (WNS) and the total negative
slack (TNS). As the terms suggest, WNS is the slack of the one path with the largest timing violation
and TNS is the sum of the slack of all paths that violate their timing constraints. A third value that is
often reported is the number of violating paths (NVP). These values are a quick way to estimate how
much more timing optimisation is necessary (for negative slack) or possible (for positive slack). A slack
graph is a histogram of the timing slack. It has the general form shown in Figure 4.44. The plotis a
good visual representation of how much more optimisation is necessary. Timing optimisation and
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Figure 4.44 Basic form of a timing slack graph

automated algorithms strive to reduce the negative slack to zero. In addition, it is generally sensible to
reclaim power and area using optimisations that strive to reduce the positive slack to zero as well.

A multi-cycle path is a combinational logic path that intentionally takes more than one clock cycle to
convey a signal between two registers in acommon clock domain. Figure 4.45 illustrates the typical
structure, which has no unusual features, except that the combinational delay through the logic block
is large with respect to the clock period T = 1/f.
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Figure 4.45 Schematic (left) and timing diagram (right) of a typical multi-cycle path. The delay through logic block C ranges from Cp,,;;, to Cmax with both
limits being between one and two clock periods

The maximum clock frequency is more than doubled when a multi-cycle path is used, since the
register timing overheads are encountered only every other clock cycle. It is given by the inequality
Tcq + Cmax + Tsu < 2T. This is based on ‘multi’ meaning exactly 2, which is the normal case. Depending
on design style, there is also a minimum clock frequency. If a multi-cycle path is to act as an extra stage
of pipeline delay, the period must be no longer than given by Tcq + Crin > T+ Thoq-
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Generally speaking, logic that has a minimum operating frequency should be avoided, since it cannot
be single-stepped and can be harder to debug. A multi-cycle path becomes a single-cycle path at low
frequencies. Often, multi-cycle paths are used where design is intrinsically tolerant to any amount of
pipelining, which is where the data are self-qualifying using a valid net or paddable justification
symbol (Section 3.7.4).

The difference between inertial and transport delays is described in Section 8.3.5. Multi-cycle paths
can potentially be designed on the transport principle, meaning that more than one value can actively
progress through the delay structure. This requires much tighter understanding of the precise delay
structure in the logic path and can be avoided in many applications. Additionally, it is possible that
register T becomes metastable in clock cycles where its output should not be used. This does not
cause a functional problem but could occasionally slightly increase energy use.

4.10 Summary

For many electronics products, the most important task is SoC design. As much logic as possible
should normally be included on the primary ASIC. This chapter has presented many of the low-level
considerations and techniques in SoC design. Whenever a basic equation defines the behaviour, this
equation has been presented. A potential design will deploy some combination of techniques.
However, a system architect will rarely view the overall problem mathematically. Instead they will
make instinct-directed design decisions while being tacitly aware of the basic shapes of the underlying
curves. Itis important to be able to get rapid feedback of the energy, area, cost and performance of a
potential design without having to invest too much effort in that particular design point. Techniques
for generating high-level models of the system will be presented next, in Chapter 5. Design
exploration is the process of experimenting with major and minor design variations to optimise these
key metrics. This will be covered in Chapter 6.

The reader has now seen formulae and techniques that cover the main quantities used in the
high-level design of a SoC. They should have become familiar with parallel speedup, queuing delay,
electricity use, thermal management, test structures, security and clock distribution.

4.10.1 Exercises

1. If an accelerator multiplies the performance of one quarter of a task by a factor of four, what is the
overall speedup?

2. The server for a queue has a deterministic response time of 1 ps. If arrivals are random and the
server is loaded to 70% utilisation, what is the average time spent waiting in the queue?

3. If the server is still loaded to 70% but now has two queues, with one being served in preference to

the other, and 10% of the trafficis in the high-priority queue, how much faster is the higher-priority
work served than the previous design where it shared its queue with all forms of traffic?
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If a switched-on region of logic has an average static to dynamic power use of 1to 4 and a clock
gating can save 85% of the dynamic power, discuss whether there is a further benefit to power
gating.

. What is the minimum information that needs to be stored in a processor trace buffer to capture all

aspects of the behaviour of a program model given that the machine code image is also available?

. A 100-kbit SRAM mitigates against a manufacturing fault using redundancy. Compute the

percentage overhead for a specific design approach of your own choosing. Assuming at most one
fault per die, which may or may not lie in an SRAM region, how do the advantages of your approach
vary according to the percentage of the die that is an SRAM protected in this way?

. Assuming an embarrassingly parallel problem, in which all data can be held close to the processing

element that operates on it, use Pollack’s rule and other equations to derive a formula for
approximate total energy use with a varying number of cores and various clock frequencies within
agivensilicon area.

. Consider a succession of matrix multiplications, as performed by convolutional neural networks

(CNNss) and similar applications in which the output of one stage is the input to the next. Is FIFO
storage needed between stages and if so, could a region of scratchpad RAM be sensibly used or
would it be better to have a full hardware FIFO buffer?
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A SoC combines hardware and software and communicates with the outside world via various
interfaces. An electronic system-level (ESL) model of a SoC can simulate the complete system
behaviour. This includes running all the software that the real SoC will run in a largely unmodified
form. An alternative name for an ESL model is a virtual platform. In some SoC design flows, creating
the ESL model is the first design step. A process of incremental refinement then gradually replaces
high-level components with lower-level models or actual implementations. Ultimately, all of the
system is implemented, but a good ESL methodology enables an arbitrary mix of high- and low-level
modelling styles that interwork. A typical use case is when all the design is present in high-level form
except for one or two subsystems of current interest for which greater modelling detail is needed to
answer a specific design question.

In this chapter, we present the main aims of and approaches to ESL modelling. We review the
SystemC modelling library and its transaction library and discuss how high-level models can be
calibrated to give useful insights into power and performance.

The performance of an ESL model must be good enough to execute large programs in a reasonable
time. This typically means achieving at least 1 per cent of real system performance. An ESL model is
normally accurate in terms of memory layout and content, but many other hardware details are
commonly neglected unless they are of special relevance to the test being run. This is the principal
means of achieving a high-performance simulation.

By default, an ESL model simulates the system from the point of power-up or reset. Another way to
apply an ESL model to complex software is checkpoint and replay. This is useful if a significant amount
of software must run before the point of interest is approached. A checkpoint is chosen, such as after
the boot or operating system start. At the checkpoint, the entire state of the model is saved to a
checkpoint file. Information could be captured from the real system in principle, but the ESL model
may not be identical to the real system and minor discrepancies may arise. Moreover, instrumenting
the real system may be tricky (especially if it does not exist yet). Since the checkpoint serves as the
basis for a number of experiments, the time invested in generating it is amortised.

To conduct an experiment, the ESL model is loaded with the checkpoint data and modelling rolls
forward from that point. The model may be switched to a greater level of detail than used for
preparing the checkpoint, either globally or just for some subsystems. For instance a high-level model
of an I/O block may be switched to an RTL model.

5.1 Modelling Abstractions

The modelling system should ideally support all stages of the design process, from design entry to
fabrication. However, we cannot model a complete SoC in detail and expect to simulate the booting of
the operating system in a reasonable time. A model that is a million times slower than the real
hardware would take 115 days to simulate a boot sequence that lasts 10 seconds! An ESL virtual
platform must support a number of levels of modelling abstraction and a way to interwork between
them. Most ESL models are built on top of some form of event-driven simulation (EDS) (also known as
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discrete-event simulation). An EDS simulator defines various types of discrete event and the
simulation is a progression of events in the time domain. Detailed variations of EDS are discussed
in Section 8.3.4. The main variation in modelling detail is the type of event predominantly used:
examples range from the change in state of an individual digital net to the delivery of a complete
Ethernet packet. At the highest level, events are replaced with flow rates, giving a fluid-flow model,
which essentially traces the progression of a set of simultaneous differential equations.

An overall taxonomy of modelling levels is as follows:
1. Functional modelling: The output from a simulation run is accurate.
2. Memory-accurate modelling: The contents and layout of memory are accurate.

3. Cycle lumped or untimed TLM: Complete transactions between IP blocks, such as the delivery of a
burst of data, are modelled as atomic events. No timestamps are recorded on transactions. Cycle
counts are accurate at the end of a program run; however, individual cycles are not modelled.
Typically a sub-model will do a quantum of work and then update the cycle count.

4. Stochastic or loosely timed TLM: The number of transactions is accurate, and even though the
order may be wrong, each is given a timestamp based on standard queuing models. Thus, an overall
runtime can be reported. Formulae from queuing theory (Section 4.3.1) can be used to incorporate
the time spent waiting in queues instead of modelling the queues themselves. Synthetic traffic
injectors, characterised by a mean rate and burst size and other numeric parameters, replace real
applications, although traces from real runs can also be replayed from a file.

5. Approximately timed TLM: The number and order of transactions are accurate and the degree to
which they overlap or interfere is measured.

6. Cycle-accurate simulation: The number of clock cycles consumed is accurate and the work done in
each clock cycle is accurately modelled. A simulation of synthesisable RTL gives such a model, if the

combinational nets are evaluated only when needed.

7. Net-level EDS: The netlist of the subsystem is fully modelled and the ordering of net changes
within a clock cycle is accurate.

8. Analogue and mixed-signal simulation: Voltage waveforms for certain nodes are modelled.

Before explaining these levels in greater detail, two further terms are worth defining:

1. With programmer-view accuracy, the model correctly reflects the contents of programmer-
visible memory and registers. The programmer’s view (PV) contains only architecturally significant

registers, such as those that the software programmer can manipulate with instructions. Other
registers in a particular hardware implementation, such as pipeline stages and holding registers to
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overcome structural hazards (Section 6.3.2), are not part of the PV. These are typically not present
in a PV model. If a PV model also has a notion of time, it is denoted PV+T. Similarly, PV+ET denotes
the modelling of energy and time use.

2. The term ‘behavioural modelling’ has no precise definition, but generally denotes a simulation
model that is different from the real implementation. For instance, a handcrafted program may be
written to model the behaviour of a component or subsystem. More specifically, it can denote a
model that expresses the behaviour of a component using an imperative thread of execution, as in
software programming. Such a thread performs successive reads and writes of registers, whereas
an RTL implementation makes all the assignments in parallel on a clock edge. In Section 5.3, we
implement behavioural models of hardware components using the SystemC library.

As mentioned in Chapter 1, the starting point for a SoC for some classes of application may be a
software program that generates the same output as the SoC should generate. This is the functional
model. For an loT device, the model would serve the same responses over the network. For an RF
transmitter subsystem, it might write the analogue waveform to be fed to the real antenna to a file on
the modelling workstation. The output generated by this highest of models is shown in yellow on
Figure 1.10. Although such models represent none of the structure of the SoC implementation, they
define the basic behaviour required and provide reference data that can be used to evaluate both the
SoC-based solution and the reset of the ecosystem.

A SoC typically contains a large amount of memory. The next refinement can be to determine the
number of different logical memory spaces there should be in the SoC and to plan their detailed
layout. The software in the functional model should be partitioned into that representing hardware
and that remaining as software running inside the SoC. This model will have a number of arrays,
which, ultimately, will be held in one or more SRAM and DRAM components in the real hardware. In a
memory-accurate model, the contents of each array in the model are the same as the contents of the
real memory in the final implementation. Manually counting the frequency of operations on the
arrays or the number of iterations of the inner loops of this model gives a preliminary estimate of the
amount of processing power and memory bandwidth needed in the SoC. A simple spreadsheet
analysis of these figures can be used as a first estimate of the final power consumption and battery
life. Using an assertion-based design (ABD) approach (Section 7.2.2), the first assertions can be
written about the contents of the memory.

In ESL modelling, the next refinement is to generate a transaction-level model (TLM). In mainstream
computer science, the term transaction is related to properties of atomicity, plus commits and
rollbacks. In ESL modelling, the term means less than that. Rather, a transaction simply means that
one component invokes an operation on another component. Using object-oriented programming,
the components can be modelled as instances of classes and the transactions implemented as method
invocations of one component or another. A transaction could be as simple as changing the value of
one net, but more commonly a transaction represents hundreds or thousands of nets changing value.
Moreover, many of the real nets or interconnect components do not need to be represented at all.
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This is the primary reason that a TLM model runs so much faster than a net-level simulation. TLM
models can optionally include time, power and energy. TLM modelling is discussed in Section 5.4.

A cycle-accurate model for a subsystem models all state bits in registers and RAMs for the
subsystem. The state bits are updated once per clock cycle to reflect their new value on that clock
edge. The values for combinational nets do not have to be computed if a static analysis shows that
they are not participating in the next-state function. If they are computed, there is no representation
of when in the clock cycle they changed or whether they glitched. To increase performance, a
cycle-accurate model will typically use a simple two-value logic system or a four-value logic system
rather than the richer logic of Verilog or VHDL (Section 8.3.3). A cycle-callable model is a
cycle-accurate model of one clock domain. It essentially consists of a subroutine that can be called by
athread in a higher-level simulator that causes the model to advance by one clock cycle. For instance,
a cycle-callable model of a counter would just be a subroutine that increments the counter value.

Lower-level models represent all the flip-flops and busses of the real implementation. These are
based on RTL implementations of the components. RTL synthesis does not greatly affect the number
of state bits or their meaning, although there may be some optimisation of the state encoding, as
mentioned in Section 4.4.2. RTL synthesis does, however, instantiate many combinational gates and it
can also bit blast (implement a bus or arithmetic operator in terms of its individual bits, Section 8.3.8),
so an EDS simulation post-synthesis runs much more slowly than before RTL synthesis. The
simulation is slower not only because of the 10x to 50x increase in the number of nets, but also
because the timing of combinational nets within the clock cycle is accurately represented.

As discussed in Section 8.3.7, an even lower-level simulation is possible, in which the voltage
waveform on a net is simulated rather than just being treated as a digital value. This is required for
analogue and mixed-signal systems but is not normally required for digital logic.

5.1.1 ESL Flow Diagram

ESL flows are most commonly based on C++. The SystemC TLM library for C++ is also typically used
(Section 5.3). In SoC design, C/C++ tends to be used for behavioural models of peripherals, for
embedded applications, for the operating system and for its device drivers. The interface
specifications for the hardware-to-software APls are then in .1 files, which are imported into both the
hardware and software strands. These three forms of C++ file are shown across the top of Figure 5.1.
To create the embedded machine code for an SoC-level product, the software strand is compiled with
a compiler appropriate for the embedded cores (e.g. gcc—arm). As explained in Chapters 6 and 8, the
behavioural models of the hardware are converted by various means into the RTL and gate-level
hardware for the real SoC. This is illustrated in the diagonal right-to-left downwards trajectory in the
figure. On the other hand, the fastest ESL models are typically generated by the left-to-right
downwards trajectory. This takes the hardware models and the embedded software and links them
together so that the entire system can be run as a single application program. This is possible only if
suitable coding guidelines are followed. Instead of simulating millions of times slower than real time,
this hybrid model can run even faster than real time, such as when a high-performance modelling
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Figure 5.1 Overall setup of a generic ESL flow. The heavy lines show the fastest technique, which avoids using an instruction set simulator (ISS) through
native cross-compiling of the embedded firmware and direct linking with behavioural models of the hardware

workstation has a more powerful processor than the embedded SoC cores. The hybrid program may

rely on a threads package, typically provided by the SystemC EDS kernel, but it is coded so that
context switches are minimised.

A simple yet stark example of the potential performance gain is to consider a network packet being
received by a device driver and transferred over the bus to memory. This will involve tens of
thousands of transitions at the gate outputs of the real implementation. Using a net-level simulation,
the simulation for each gate transition might require the modelling workstation to execute 100
instructions. However, with a suitable ESL coding style, the packet reception transaction can be
modelled with a simple method call between one component and another that takes fewer than 100
instructions in total. With careful memory management, the data transferred by the transaction does
not even need to be copied; a pointer to its buffer is all that needs to be conveyed in the transaction.

Figure 5.1 also shows two flow variations:

1. Aninstruction set simulator (ISS) may be used to interpret the machine code of the embedded
cores. The typical structure of an interpreting ISS is illustrated in Section 5.5. However, the best ISS
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implementations, like JIT compilers for JavaScript, spot frequently used execution paths in the
inner loops of the interpreted machine code and cross-compile this code to native machine code for
the modelling workstation. Hence, the performance can again approach faster than real-time
speed.

2. If an RTL model differs greatly from the initial high-level model or if a high-level model does not
exist, the RTL design can be projected back to a C++ model using standard tools. One of the first to
do this was VTOC from Tenison EDA. Today, the public-domain Verilator tool is often used. Some IP
providers make C++ models directly available. For instance, Arm provides many C++ models
generated from internal RTL using the Carbon tool chain.

5.2 Interconnect Modelling

Interconnect models are used to study the behaviour of an interconnect and for performance
trade-offs before the actual interconnect is designed. They also serve to provide realistic delay
estimates during ESL modelling of a complete SoC. Another quite useful role for a detailed
interconnect model is to replicate a problem in a production version and then carry out mitigation
studies. Both packetised networks-on-chip (NoCs) and conventional circuit-switched interconnects
convey discrete events that encounter queueing and arbitration, so the same modelling techniques
largely apply to both.

An interconnect can be modelled at a high level using queuing theory or in more detail by modelling
individual contention events. The stochastic queuing formulae presented in Section 4.3.1 reflect the
emergent behaviour that occurs when a large number of uncorrelated event generators share
interconnect components. However, real designs can convey a large amount of unexpectedly
correlated traffic and queuing theory then gives the wrong answer. For instance, the queuing formula
for an M/M/1 system gives an inflated result for systems that are actually closer to M/D/1 due to
deterministic behaviour in the server or when the events it potentially serves cannot all arrive at once
due to secondary mechanisms.

In more detail, a taxonomy of interconnect modelling, in order of increasing detail, is:

1. High-level static analysis: A fluid-flow model populates a spreadsheet (or equivalent) using the
traffic flow matrix defined in Section 3.5.1. If the routing protocol is followed, then for each point of
contention, the utilisation and service disciplines are known and hence, the buffer occupancy and
transit delay can be computed from the standard stochastic formulae. This approach is suitable for
aninitial design, and it can also generate simplistic delay values, which are added to the ‘sc_time
&delay field in aloosely timed TLM model.

2. Virtual queuing: A virtual platform propagates transactions across an interconnect without queue

models or delay. However, the routing protocol is followed and hence, the dynamic level of traffic at
each contention point is accurate to the timescale within which transaction ordering is maintained
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(e.g. the TLM quantum). A delay penalty based on stochastic formulae is then added to the
transaction delay field. This style of modelling is demonstrated in detail in Section 5.4.5.

3. TLM queuing: High-level models of switching elements contain queues of transactions. Coding
based on blocking TLM (Section 5.4.1) is then typically required.

4. Cycle-accurate modelling: The model is accurate to the clock cycle, either using TLM or RTL-level
simulation, as described in Section 5.2.2.

5.2.1 Stochastic Interconnect Modelling

There is a wealth of material in the networking domain that models interconnects for various forms of
random traffic. Many of the models based on a Markov process [1] are excellent analytical tools for
detailed mathematical studies. A Markov process is one in which the current state of the system is
sufficient to predict its next behaviour. The system operates as a chain of operations each modifying
the current state of the system and no further history is required. Markov models work well when
traffic sources are uncorrelated and the applied load is independent of the round-trip latency. Many
aspects of wide-area networks such as the Internet can be accurately studied in this way. Many
factors affect network behaviour, e.g. packet arrival rates and times at the various ingress points and
packet departure rates at the egress points. Traffic levels can be regarded as stationary or slowly
varying with a daily and weekly pattern. Even for a NoC, this sort of information is typically available,
or at least some meaningful approximation can be found. Hence, Markov models are useful for
high-level dimensioning and provisioning studies. Given sufficiently accurate traffic models, e.g. in
terms of packet length distribution, the effects of arbitration policies and other features of an
interconnect can be explored.

Despite their advantages, stochastic sources and Markovian fabric models are often not helpful for a
particular issue with a production chip. Compared with cycle-accurate modelling, problems include:

® broad-brush correlations in traffic patterns (such as responding to a request) may not be captured
adequately

= |ocal effects may be neglected at a particular contention point

® the order of transactions will be incorrect under loose timing (see later)

= a3 deadlock may be missed.

5.2.2 Cycle-accurate Interconnect Modelling

The most detailed and lowest level of interconnect modelling is cycle-accurate modelling. Aliasing

traffic occurs when a link carries multiple flows. The term is especially relevant if traffic shares a NoC
virtual channel. The behaviour of an interconnect with respect to event interdependence and various
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other aliasing effects cannot be effectively investigated at any higher level of abstraction, because, at
a contention point, the traffic shape can entirely change the performance characteristic. As an
example, if two packets arrive at a switching element such that each arrival requires arbitration, then
there will be a delay resulting in an increase in overall latency. However, if the same two packets arrive
one after the other, no such delay is observed. Any store-and-forward network distorts the shape of
the traffic from that received at the ingress to that which it displays at the egress.

To model an entire interconnect at a cycle-accurate level, each of the individual sub-models must
operate at a cycle-accurate level. The end points can be modelled using a bus functional model (BFM)
or plugged into a real system, e.g. Arm’s mesh generators [2, 3]. Quite often it is not necessary to
integrate actual end-point devices for performance analysis or problem-solving. The input stimuli can
be either traces, obtained from real-world systems, or more popularly synthetic scenarios, as
described in Section 3.5.1. A second and detailed analysis phase can use more accurate end-point
models or RTL-level simulations.

If multiple clocks or clock edges are used, sub-cycle accuracy modelling is occasionally needed, since a
cycle-accurate model may still be insufficient to capture the subtleties of a problem. There may be
behavioural differences between RTL and the model, and it is not trivial to get the model right. Such
models are stabilised over generations of a product.

As stated at the start of this chapter, a virtual platform ideally supports interworking between
different levels of abstraction. If a behavioural subtlety has been identified, only the localised
subsystem needs to use a low-level model. This is joined to the remainder of the ESL model using
transactors (Section 5.4.8).

5.3 SystemC Modelling Library

SystemC is a free library for C++ for hardware modelling. It was initially promoted by OSCI, the Open
SystemC Initiative, and is now available from Accelera and standardised as IEEE-1666 [4]. Each
hardware component is defined by a C++ class that may instantiate lower-level components. SystemC
neatly supports any mixture of TLM and net-level modelling and it can be used for simulation and
synthesis. It was originally designed as an RTL-equivalent means of representing digital logic inside
C++. The next sections cover these basic aspects and then Sections Section 5.4 and Section 6.9 move
onto uses for ESL and synthesis.

The SystemC core library includes the following essential elements:

= A module system with inter-module channels: C++ class instances are instantiated in a hierarchy,
following the circuit component structure, in the same way that RTL modules instantiate each other.

= Akernel that runs in user space: It provides facilities for the system time, pausing a simulation and

name resolution. It implements an EDS event queue that roughly follows the detailed semantics of
VHDL (described in Section 8.3.4). Event notifications and threads are provided. The threads are
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not pre-emptive, which allows user code to take a lightweight approach to data structure locks, but
there may be problems running SystemC on multi-core workstations. Threads run inside
components either using a lightweight trampoline style, returning the thread to the kernel without
blocking, or by blocking the thread inside the component, which requires a per-thread stack.

® The compute/commit signal paradigm, as well as other forms of channel for connecting components
together: The compute/commit operation, described in Section 8.3.6, is needed inside a zero-delay
model of a clock domain to avoid shoot-through (Section 4.6.9), which occurs when one flip-flop in a
clock domain changes its output before another has read the previous value. If propagation times
are unknown, as is the case when writing new code or porting to a new fabrication technology, a
zero-delay model is preferable to a model that embodies an arbitrary and inaccurate non-zero delay.

= Alibrary of arbitrary fixed-precision integers: Hardware typically uses many busses and counters
with different widths that wrap accordingly. SystemC provides classes of signed and unsigned
variables of any width that behave in the same way. For instance, a user can define an sc_int of
5 bits and put it inside a signal. Being signed, it will overflow when it is incremented beyond 15 and
wrap to —16. The library includes overloads of all the standard arithmetic and logic operators for
these types.

= Plotting output functions that enable waveforms to be captured to a file and viewed with a
standard waveform viewer program such as gtkwave, as shown in Section 5.3.3.

A problem with SystemC arises from the lack of a reflection APl in the C language. A reflection API, as
found in Python for instance, enables a program to inspect its own source code. This is very useful for
reporting runtime errors and other types of static analysis, such as when an expression may need to
be recomputed due to its free variables having changed value. To overcome this, SystemC coding
sometimes requires the user to annotate a structure with its name as a string, but the C preprocessor
can help minimise the amount of double-entry of identifiers needed. Another problem is that
hardware engineers are often not C++ experts, but if they misuse the library, they can be faced with
complex and advanced C++ error messages.

One of the major benefits of SystemC is the intrinsic excellent performance of anything coded in C++.
Moreover, it is a standard adopted by the entire electronic design automation (EDA) industry.
General-purpose behavioural code, including application code and device drivers, is modelled and/or
implemented in this common language.

First Example: A Binary Counter

SystemC enables a component to be defined using the SC_MODULE and SC_CTOR macros. Figure 5.2
gives an example component definition. The example is a leaf component since it has no children. It
uses behavioural modelling to express what it does on each clock edge. Each of these SC macros is
expanded into a C++ class definition and its constructor along with some code that registers each
instance with the runtime SystemC kernel. Modules inherit various attributes appropriate for an
hierarchic hardware design, including an instance name, a type name and channel binding capability.
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SC_MODULE (mycounter) // An example of a leaf module (no subcomponents)
{
sc_in < bool > clk, reset;

sc_out < sc_int<10> > myout;

void mybev() // Internal behaviour, invoked as an SC_METHOD
{

myout = (reset) 7 0: (myout.read()+1); // Use .read() since sc_out makes a signal
}
SC_CTOR (mycounter) // Constructor

{ SC_METHOD (mybev) ; // Require that mybev is called on each positive edge of clk

sensitive << clk.pos();

}

Figure 5.2 A 10-bit binary counter with synchronous reset, coded as a SystemC class

The sensitive construct registers a callback with the EDS kernel that says when the code inside the
module should be run. However, an unattractive feature of SystemC is the need to use the .read ()
method when reading a signal.

5.3.1 SystemC Structural Netlist
A structural netlist or gate-level netlist is a circuit diagram showing the connections between
components (Figure 5.3 and Section 8.3.1).

A SystemC templated channel is a general purpose interface between components. We rarely use the
raw channels. Instead, the derived forms - sc_in, sc_out and sc_signal - are mostly used. These
channels implement the compute/commit paradigm required for delta cycles (Section 8.3.6). This
avoids indeterminacy from racing in zero-delay models. The fragment in Figure 5.4 illustrates the
compute/commit behaviour. The sc_signal is an abstract (templated) data type that has a current
value and a next value. Signal reads get the current value, and the next value is written. If the EDS
kernel blocks when there are no more events in the current time step, the pending new values are
committed to the visible current values. Hence, the value read from the signal changes from 95 to 96.

Other channels provided include a buffer, FIFO and mutex. Users can overload the channel class to
implement channels with their own semantics as needed. Note that a rich set of non-standard
channels is not a good basis for reusable IP blocks that are widely interoperable. Hence, designers
should minimise the number of new channel types. However, it is not possible to get high performance
from a model that invokes the EDS kernel for every change of every net or bus.
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//Example of structural hierarchy and wiring between levels:
SC_MODULE (shiftreg) // Two-bit shift register
{ sc_in < bool > «clk, reset, din;

sc_out < bool > dout;

sc_signal < bool > ql_s;

reset dff dff1, dff2; // Instantiate FFs
din ql_s dout SC_CTOR(shiftreg) : dffi("dff1"), dff2("dff2")
D Q D Q—+— { dffil.clk(clk);
> > dffl.reset (reset);
dff dffo dff1.d(din);
clk dff1.q(ql_s);
shiftreg

dff2.clk(clk);
dff2.reset (reset);
dff2.d(ql_s);
dff2.q(dout);

g

Figure 5.3 Schematic (left) and SystemC structural netlist (right) for a 2-bit shift register

int nv; // nv is a simple C variable (POD, plain old data)
sc_out < int > data; // data and mysig are sc_signals (non-POD)
sc_signal < int > mysig; //

nv += 1;

data = nv;

mysig = nv;

printf ("Before nv=}i, %i %i\n'', nv, data.read(), mysig.read());
wait (10, SC_NS);
printf ("After nv=}i, %i %i\n'', nv, data.read(), mysig.read());

Before nv=96, 95 95
After nv=96, 96 96

Figure 5.4 Compute/commit behaviour

5.3.2 SystemC Threads and Methods

SystemC enables a user module to have its own thread and stack. However, the memory footprint is
lower if the user code operates in a trampoline style using only non-blocking upcalls from the kernel.
As shown in the subsequent examples, the constructor for a component typically uses one or other of
these coding styles, depending on its needs and complexity. Code can block, either by making a
blocking system call, such as aread, or a SystemC call, such aswait (sc_time), or by entering a
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lengthy or infinite loop. There may be multiple threads active, using, perhaps, a mixture of these two
styles. The constructor selects the thread for each upcall using either:

= The SC_THREAD macro if an upcall is allowed to block and retain the thread forever.

= The SC_METHOD for an upcall that will not block but always returns once the instantaneous work is
complete.

For efficiency, designers should use SC_METHOD whenever possible. SC_THREAD should be reserved for
when an important state must be retained in the program counter from one activation to the next or
for when asynchronous active behaviour is needed. This choice of programming styles is also the basis
for two main programming TLM styles introduced later: blocking and non-blocking (Section 5.4.1).

The earlier counterexample of Figure 5.2 used SC_METHOD. Figure 5.5 is an example that uses
SC_THREAD. It is a data source that provides a stream of increasing numbers using a net-level
four-phase handshake (Section 3.1.3).

SC_MODULE (mydata_generator)

{ sc_out < int > data;
sc_out < bool > req;
sc_in < bool > ack;

void myloop ()
{ while(1)
{ data = data.read() + 1;
wait (10, SC_NS);

req = 1;
do { wait (10, SC_NS); } while(!ack.read());
req = 0;

do { wait (10, SC_NS); } while(ack.read());
}
}

SC_CTOR (mydata_generator)
{
SC_THREAD (myloop) ;
¥
¥

Figure 5.5 Sample code using SC_THREAD

SystemC supports all standard ISO time specifications from femtoseconds to seconds using a library
type SC_TIME. For instance,

sc_time ten_nanoseconds (10, SC_NS)

defines a variable called ten_nanoseconds initialised to the eponymous value. A SystemC thread can
then block for this time using wait (ten_nanoseconds). All standard arithmetic overloads are
supported for the SC_TIME type.
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Waiting for an arbitrary Boolean expression to become true is hard to implement in a language such as
C++ because it is compiled. It does not have a reflection APl that enables a user expression to be
re-evaluated by the EDS kernel. Yet, we still want a reasonably neat and efficient way of blocking a
thread on an arbitrary event expression coded in C++. The original solution was the delayed
evaluation class. For instance, one would write:

waituntil (mycount.delayed() > 5 && !reset.delayed());

The delayed () suffix used neat overloading tricks to construct the abstract syntax tree of the
expression on the runtime heap rather than compile the expression natively. Hence, the kernel could
deduce its support (the set of conditions for which the expression needs to be re-evaluated) and
evaluate it when needed. This was deemed to be too unwieldy and removed. Today, we write a less
efficient spin, viz.:

do { wait(10, SC_NS); } while(!((mycount > 5 && !reset)));

Moreover, within SystemC, there is no direct equivalent to the continuous assignment of Verilog.
However, the fully supported sensitivity list always @(*) or always_comb can be reproduced with an
SC_METHOD where the user manually lists the supporting nets. Performance is enhanced by putting the
continuous assignment behaviour in a method and remembering to call that method whenever the
support is changed in other parts of the model. However, such manual coding is liable to programming
error and is fragile when edited. Fortunately, for TLM models in SystemC, very little continuous
assignment is needed, with the exception being, perhaps, just interrupt wiring.

5.3.3 SystemC Plotting and its GUI

SystemC supports the dumping of a waveform plot to the industry-standard Verilog Change Dump
(VCD) files for later viewing with visualisers such as gtkwave, ModelSim from Mentor Graphics and
many other tools from the major EDA vendors. AVCD file stores net names and a list of changes in
value to those nets with associated timestamps. The nets are held in a tree structure that typically
represents the originating design hierarchy. In SystemC, traces like the one shown in Figure 5.6 can be

- GTKWave - trace.vcd' e
File Edit Search Time Markers View Help

o6 B EEQ + =X H* »ﬂ 4 B | From:(0sec |T0:[4950 ns || B2 | Marker: - | Cursor: 1870 ns
7 55T Signals Waves

Time
clk
serialin
serialout
Signals
clk

reset

serialin

serialout

Filter: |

Append | | Insert Replace

Figure 5.6 An example waveform view plotted by gtkwave
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generated by passing the nets to be traced to sc_trace calls, as in the top-level fragment in Figure 5.7.
Again, due to the lack of a reflection APl in C++, for the correct signal names to be shown, the nets
need to be named when instantiated or else (re)named when passed to sc_trace.

sc_trace_file *tf = sc_create_vcd_trace_file("tracefilename");

// Now call:
// sc_trace(tf, <traced variable>, <string>);

sc_signal < bool > serialin("serialin"); // A named signal
sc_signal < bool > serialout; // An unnamed signal
float fbar;

sc_trace(tf, clk);

sc_trace(tf, serialin);

sc_trace(tf, serialout, "serialout"); // Give name since not named above
sc_trace(tf, fbar, "fbar"); // Give name since POD form
sc_start (1000, SC_NS); // Simulate for 1 microsecond (old API)

sc_close_vcd_trace_file(tr);
return O;

Figure 5.7 Naming nets

5.3.4 Towards Greater Modelling Efficiency

One approach for conveying more data per kernel operation is to pass more detailed data types along
the SystemC channels, which is a step towards transactional modelling. A record containing all the
values on a bus can be supplied as the sc_channel template type. The channel requires various
methods to be defined, such as the equality operator overload shown in the fragment in Figure 5.8.

sc_signal < bool > mywire; // Rather than a channel conveying just one bit

struct capsule
{ int ts_intl, ts_int2;
bool operator== (struct ts other)
{ return (ts_intl == other.ts_intl) && (ts_int2 == other.ts_int2); }

int next_ts_intl, next_ts_int2; // Pending updates
void update ()
{ ts_intl = next_ts_intl; ts_int2 = next_ts_int2;

}

. // Also must defin